Abstract

Review Article

The beneficial effects of varicella zoster virus

Khalid Ahmed Al-Anazi*, Al-Anazi WK and Al-Jasser AM

Published: 15 July, 2019 | Volume 3 - Issue 1 | Pages: 016-049

Varicella zoster virus behaves differently from other herpes viruses as it differs from them in many aspects. Recently, there has been growing evidence on the beneficial effects of the virus in immune compromised hosts and these effects are translated into prolongation of survival. The reported beneficial effects of the virus include: (1) stimulation of bone marrow activity in patients with hematologic malignancies and bone marrow failure syndromes, (2) antitumor effects in various hematologic malignancies and solid tumors, and (3) association with graft versus host disease which has anticancer effects. Additionally, there are several reports on the safety of the live-attenuated even in severely immune suppressed individuals and on the emerging role of the virus in cancer immunotherapy. In this review, the following aspects of the virus will be thoroughly discussed: (1) new data on the genetic background, pathogenesis, vaccination, and new therapeutic modalities; (2) bone marrow microenvironment and hematopoiesis; (3) cells involved in the pathogenesis of the virus such as: mesenchymal stem cells, dendritic cells, natural killer cells, T-cells and mononuclear cells; (4) cellular proteins such as open reading frames, glycoproteins, promyelocytic leukemia protein, chaperons, and SUMOs; (5) extracellular vesicles, exosomes, and micro-RNAs; and (6) signaling pathways, cytokines, and interferons.

Read Full Article HTML DOI: 10.29328/journal.jhcr.1001010 Cite this Article Read Full Article PDF

Keywords:

Varicella zoster virus; Vaccination; Bone marrow microenvironment; Hematopoiesis; Mesenchymal stem cells; Dendritic cells; Open reading frames; Exosomes; Cytokines; Signaling pathways

References

  1. Al-Anazi KA, Al-Jasser AM, Evans DA. Effect of varicella zoster virus infection on bone marrow function. Eur J Haematol. 2005; 75: 234-240. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16104880
  2. Kamber C, Zimmerli S, Suter-Riniker F, Mueller BU, Taleghani BM, et al. Varicella zoster virus reactivation after autologous SCT is a frequent event and associated with favorable outcome in myeloma patients. Bone Marrow Transplant. 2015; 50: 573-578. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25599166
  3. Al-Anazi KA, Kanfar S, Aldayel A, Abduljalil O, Sayyed AH. Reversal of pure red cell aplasia by varicella zoster virus infection. J Hematol Clin Res. 2019; 3: 1-10.
  4. Olkinuora H, von Willebrand E, Kantele JM, Vainio O, Talvensaari K, et al. The impact of early viral infections and graft-versus-host disease on immune reconstitution following paediatric stem cell transplantation. Scand J Immunol. 2011; 73: 586-593. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21323694
  5. Matsumura-Kimoto Y, Inamoto Y, Tajima K, Kawajiri A, Tanaka T, et al. Association of cumulative steroid dose with risk of infection after treatment for severe acute graft-versus-host disease. Biol Blood Marrow Transplant. 2016; 22: 1102-1107. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26968790
  6. Fuji S, Kapp M, Einsele H. Possible implication of bacterial infection in acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Front Oncol. 2014; 4: 89. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24795865
  7. Olkinuora HA, Taskinen MH, Saarinen-Pihkala UM, Vettenranta KK. Multiple viral infections post-hematopoietic stem cell transplantation are linked to the appearance of chronic GVHD among pediatric recipients of allogeneic grafts. Pediatr Transplant. 2010; 14: 242-248. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19691523
  8. Talmadge JE. Hematopoietic stem cell graft manipulation as a mechanism of immunotherapy. Int Immunopharmacol. 2003; 3: 1121-1143. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12860168
  9. Orti G, Barba P, Fox L, Salamero O, Bosch F, et al. Donor lymphocyte infusions in AML and MDS: enhancing the graft-versus-leukemia effect. Exp Hematol. 2017; 48: 1-11. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28027963
  10. Villa N Y, Rahman M M, McFadden G, Cogle C R. Therapeutics for graftversus-host disease: from conventional therapies to novel virotherapeutic strategies. Viruses. 2016; 8: 85.
  11. Xia G, Truitt RL, Johnson BD. Graft-versus-leukemia and graft-versus-host reactions after donor lymphocyte infusion are initiated by host-type antigenpresenting cells and regulated by regulatory T cells in early and long-term chimeras. Biol Blood Marrow Transplant. 2006; 12: 397-407. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16545723
  12. Cruz CR, Bollard CM. T-cell and natural killer cell therapies for hematologic malignancies after hematopoietic stem cell transplantation: enhancing the graftversus-leukemia effect. Haematologica. 2015; 100: 709-719. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26034113
  13. Dutt S, Baker J, Kohrt HE, Kambham N, Sanyal M, et al. CD8+CD44(hi) but not CD4+CD44(hi) memory T cells mediate potent graft antilymphoma activity without GVHD. Blood. 2011; 117: 3230-3239. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21239702
  14. Weber G, Gerdemann U, Caruana I, Savoldo B, Hensel NF, et al. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia. 2013; 27: 1538-1547. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23528871
  15. Chang YJ, Zhao XY, Huang XJ. Strategies for enhancing and preserving antileukemia effects without aggravating graft-versus-host disease. Front Immunol. 2018; 9: 3041. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30619371
  16. Dickinson AM, Norden J, Li S, Hromadnikova I, Schmid C, Schmetzer H, et al. Graft-versus-leukemia effect following hematopoietic stem cell transplantation for leukemia. Front Immunol. 2017; 8: 496. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28638379
  17. De Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, et al. Italian Mesenchymal Stem Cell Group. Mesenchymal stem/stromal cells: a new ''cells as drugs'' paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des. 2013; 19: 2459-2473. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23278600
  18. Auletta JJ, Eid SK, Wuttisarnwattana P, Silva I, Metheny L, et al. Human mesenchymal stromal cells attenuate graft-versus-host disease and maintain graft versus-leukemia activity following experimental allogeneic bone marrow transplantation. Stem Cells. 2015; 33: 601-614. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25336340
  19. Kawano N, Gondo H, Kamimura T, Aoki K, Iino T, et al. Chronic graft-versushost disease following varicella-zoster virus infection in allogeneic stem cell transplant recipients. Int J Hematol. 2003; 78: 370-373. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14686497
  20. Raymond AK, Sing letary HL, Nelson KC, Sidhu-Malik NK. Dermatomal sclerodermoid graft-vs-host disease following varicella-zoster virus infection. Arch Dermatol. 2011; 147: 1121-1122. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21931063
  21. Baselga E, Drolet BA, Segura AD, Leonardi CL, Esterly NB. Dermatomal lichenoid chronic graft-vs-host disease following varicella-zoster infection despite absence of viral genome. J Cutan Pathol. 1996; 23: 576-81. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9001991
  22. Weisdorf D, Zhang MJ, Arora M, Horowitz MM, Rizzo JD, et al. Graft-versushost disease induced graft-versus-leukemia effect: greater impact on relapse and disease-free survival after reduced intensity conditioning. Biol Blood MarrowTransplant. 2012; 18: 1727-1733. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22766220
  23. Yeshurun M, Weisdorf D, Rowe JM, Tallman MS, Zhang MJ, et al. The impact of the graft-versus-leukemia effect on survival in acute lymphoblastic leukemia. Blood Adv. 2019; 3(4): 670-680. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30808685
  24. Negrin RS. Graft-versus-host disease versus graft-versus-leukemia. Hematology Am Soc Hematol Educ Program. 2015; 2015: 225-230.
  25. Belcaid Z, Lamfers ML, van Beusechem VW, Hoeben RC. Changing faces in virology: the Dutch shift from oncogenic to oncolytic viruses. Hum Gene Ther. 2014; 25: 875-884. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25141764
  26. Rudd PA, Herrero LJ. Viruses: friends and foes. In: Cartilage repair and regeneration. Intech Open. 2017.
  27. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci. 2016; 107:1373-1379. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27486853
  28. Ajina A, Prospects for combined use of oncolytic viruses and CAR Tcells. J. Immunother Maher J. Cancer. 2017; 5: 90. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29157300
  29. Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol. 2017; 7: 195. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28944214
  30. Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, et al. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res. 2013; 119: 421-475. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23870514
  31. Chaurasiya S, Chen NG, Warner SG. Oncolytic virotherapy versus cancer stem cells: a review of approaches and mechanisms. Cancers. 2018; 10: 124. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29671772
  32. Forbes NS, Coffin RS, Deng L, Evgin L, Fiering S, et al. White paper on microbial anti-cancer therapy and prevention. J Immunother Cancer. 2018; 6: 78. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30081947
  33. Wennier ST, Liu J, McFadden G. Bugs and drugs: oncolytic virotherapy in combination with chemotherapy. Curr Pharm Biotechnol. 2012; 13: 1817-1833. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21740354
  34. Bartlett DL, Liu Z, Sathaiah M, Ravindranathan R, Guo Z, et al. Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer. 2013; 12: 103. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24020520
  35. Ma W, He H, Wang H. Oncolytic herpes simplex virus and immunotherapy. BMC Immunol. 2018; 19: 40. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30563466
  36. Irwin CR, Hitt MM, Evans DH. Targeting nucleotide biosynthesis: a strategy for improving the oncolytic potential of DNA viruses. Front Oncol. 2017; 7: 229. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29018771
  37. Zhao C, Wang M, Cheng A, Yang Q, Wu Y, et al. Programmed cell death: the battlefield between the host and alpha-herpesviruses and a potential avenue for cancer treatment. Oncotarget. 2018; 9: 30704-30719. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30093980
  38. Amirian ES, Scheurer ME, Zhou R, Wrensch MR, Armstrong GN, et al. History of chickenpox in glioma risk: a report from the glioma international casecontrol study (GICC). Cancer Med. 2016; 5: 1352-1358.
  39. Canniff J, Donson AM, Foreman NK, Weinberg A. Cytotoxicity of glioblastoma cells mediated ex vivo by varicella-zoster virus-specific T cells. J Neurovirol. 2011; 17: 448-454. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21792750
  40. Pundole X, Amirian ES, Scheurer ME. Role of varicella zoster virus in glioma risk: Current knowledge and future directions. OA Epidemiology. 2014; 2: 6.
  41. Leske H, Haase R, Restle F, Schichor C, Albrecht V, et al. Varicella zoster virus infection of malignant glioma cell cultures: a new candidate for oncolytic virotherapy? Anticancer Res. 2012; 32: 1137-1144. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22493342
  42. Kennedy PGE, Gershon AA. Clinical features of varicella-zoster virus infection. Viruses. 2018; 10: 609. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30400213
  43. Weber DJ. Prevention and control of varicella-zoster virus in hospitals. Up To Date. 2019.
  44. Cohrs RJ, Gilden DH, Mahalingam R. Varicella zoster virus latency, neurological disease and experimental models: an update. Front Biosci. 2004; 9: 751-762. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14766405
  45. Tombácz D, Prazsák I, Moldován N, Szűcs A, Boldogkői Z. Lytic transcriptome dataset of varicella zoster virus generated by long-read sequencing. Front Genet. 2018; 9: 460. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30386374
  46. Sommer MH, Zagha E, Serrano OK, Ku CC, Zerboni L, et al. Mutational analysis of the repeated open reading frames, ORFs 63 and 70 and ORFs 64 and 69, of varicella-zoster virus. J Virol. 2001; 75: 8224-8239. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11483768
  47. Grose C, Buckingham EM, Carpenter JE, Kunkel JP. Varicella-zoster virus infectious cycle: ER stress, autophagic flux, and amphisome-mediated trafficking. Pathogens. 2016; 5: 67. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27973418
  48. Lenac Roviš T, Bailer SM, Pothineni VR, Ouwendijk WJ, Šimić H, et al. Comprehensive analysis of varicella-zoster virus proteins using a new monoclonal antibody collection. J Virol. 2013; 87: 6943-6954. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23596286
  49. Fan Y, Sanyal S, Bruzzone R. Breaking bad: how viruses subvert the cell cycle. Front. Cell Infect Microbiol. 2018; 8: 396. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30510918
  50. Kawai K, Yawn BP. Risk factors for herpes zoster: a systematic review and meta-analysis. Mayo Clin Proc. 2017; 92: 1806-1821. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29202939
  51. Ivanova L, Tzaneva D, Stoykova Z, Kostadinova T. Viral diseases in transplant and immunocompromised patients. In: Immunopathology and immunomodulation. Intech Open. 2015.
  52. Pergam SA, Limaye AP. AST Infectious Diseases Community of Practice: Varicella zoster virus (VZV) in solid organ transplant recipients. Am J Transplant. 2009; 9: 108-115. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20070670
  53. Wiegering V, Schick J, Beer M, Weissbrich B, Gattenlöhner et al. Varicellazoster virus infections in immunocompromised patients - a single centre 6-years analysis. BMC Pediatr. 2011; 11: 31. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21569228
  54. Folatre I, Zolezzi P, Schmidt D, Marín F, Täger M. Infections caused by Varicella zoster virus in children with cancer aged less than 15 years old. Rev Med Chil. 2003; 131: 759-764. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14513696
  55. Marra F, Lo E, Kalashnikov V, Richardson K. Risk of herpes zoster in individuals on biologics, disease-modifying antirheumatic drugs and/or corticosteroids for autoimmune diseases: a systematic review and meta-analysis. Open Forum Infect Dis. 2016; 3: 205. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27942537
  56. Fan L, Wang Y, Liu X, Guan X. Association between statin use and herpes zoster: systematic review and meta-analysis. BMJ Open. 2019; 9: 022897. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30765397
  57. Schmidt SA, Mor A, Schønheyder HC, Sørensen HT, Dekkers OM, et al. Herpes zoster as a marker of occult cancer: a systematic review and meta-analysis. J Infect. 2017; 74: 215-235. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27845154
  58. Albrecht MA, Levin MJ. Epidemiology, clinical manifestations, and diagnosis of herpes zoster. Up To Date. 2019.
  59. Ogunjimi B, Zhang SY, Sørensen KB, Skipper KA, Carter-Timofte M, et al. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J Clin Invest. 2017; 127: 3543-3556. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28783042
  60. Wung PK, Holbrook JT, Hoffman GS, Tibbs AK, Specks U, et al. WGET Research Group. Herpes zoster in immune compromised patients: incidence, timing, and risk factors. Am J Med. 2005; 118: 1416.
  61. Kanbayashi Y, Matsumoto Y, Kuroda J, Kobayashi T, Horiike S, et al. Predicting risk factors for varicella zoster virus infection and postherpetic neuralgia after hematopoietic cell transplantation using ordered logistic regression analysis. Ann Hematol. 2017; 96: 311-315. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27896415
  62. Leung TF, Chik KW, Li CK, Lai H, Shing MM, et al. Incidence, risk factors and outcome of varicella-zoster virus infection in children after haematopoietic stem cell transplantation. Bone Marrow Transplant. 2000; 25: 167-172. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10673675
  63. Crosslin DR; Carrell DS, Burt A, Kim DS, Underwood JG, et al. Genetic variation in the HLA region is associated with susceptibility to herpes zoster. Genes Immun. 2015; 16: 1-7. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25297839
  64. Sandherr M, Hentrich M, von Lilienfeld-Toal M, Massenkeil G, Neumann S, et al. Antiviral prophylaxis in patients with solid tumours and haematological malignancies--update of the Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO). Ann Hematol. 2015; 94: 1441-1450. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26193852
  65. Sandherr M, Einsele H, Hebart H, Kahl C, Kern W, et al. Infectious Diseases Working Party, German Society for Hematology and Oncology. Antiviral prophylaxis in patients with haematological malignancies and solid tumours: Guidelines of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Oncology (DGHO). Ann Oncol. 2006; 17: 10511059. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16410361
  66. Yetgin S, Kuşkonmaz B, Aytaç S, Cetin M. The evaluation of acquired aplastic anemia in children and unexpected frequency of varicella-zoster virus association: a single-center study. Turk J Pediatr. 2008; 50: 342-348. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19014047
  67. Gulick RM, Heath-Chiozzi M, Crumpacker CS. Varicella-zoster virus disease in patients with human immunodeficiency virus infection. Arch Dermatol. 1990; 126: 1086-1088. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2200349
  68. Alcaide ML, Abbo L, Pano JR, Gaynor JJ, Tryphonopoulos P, et al. Herpes zoster infection after liver transplantation in patients receiving induction therapy with alemtuzumab. Clin Transplant. 2008; 22: 502-507. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18627401
  69. Dogra M, Bajgai P, Kumar A, Sharma A. Progressive outer retinal necrosis after rituximab and cyclophosphamide therapy. Indian J Ophthalmol. 2018; 66: 591-593. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29582832
  70. Tsuji H, Yoshifuji H, Fujii T, Matsuo T, Nakashima R, et al. Visceral disseminated varicella zoster virus infection after rituximab treatment for granulomatosis with polyangiitis. Mod Rheumatol. 2017; 27: 155-161. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25159158
  71. König C, Kleber M, Reinhardt H, Knop S, Wäsch R, et al. Incidence, risk factors, and implemented prophylaxis of varicella zoster virus infection, including complicated varicella zoster virus and herpes simplex virus infections, in lenalidomide-treated multiple myeloma patients. Ann Hematol. 2014; 93: 479484. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24318541
  72. Curley MJ, Hussein SA, Hassoun PM. Disseminated herpes simplex virus and varicella zoster virus coinfection in a patient taking thalidomide for relapsed multiple myeloma. J Clin Microbiol. 2002; 40: 2302-2304. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12037117
  73. Thomas SL, Hall AJ. What does epidemiology tell us about risk factors for herpes zoster? Lancet Infect Dis. 2004; 4: 26-33. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14720565
  74. Kim JW, Min CK, Mun YC, Park Y, Kim BS, et al. Varicella-zoster virusspecific cell-mediated immunity and herpes zoster development in multiple myeloma patients receiving bortezomib- or thalidomide-based chemotherapy. J Clin Virol. 2015; 73: 64-69. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26546878
  75. Park H, Youk J, Kim HR, Koh Y, Kwon JH, et al. Infectious complications in multiple myeloma receiving autologous stem cell transplantation in the past 10 years. Int J Hematol. 2017; 106: 801-810. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28825207
  76. Carter-Timofte ME, Paludan SR, Mogensen TH. RNA polymerase III as a gatekeeper to prevent severe VZV infections. Trends Mol Med. 2018; 24: 904915. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30115567
  77. Al-Jasser AM, Al-Anazi KA. Infections in patients with multiple myeloma in the era of novel agents and stem cell therapiues. In: Update on multiple myeloma. Intech Open 2018.
  78. Mazzarello V, Ferrari M, Decandia S, Sotgiu MA. Sunlight and herpes virus. In: Human herpesvirus infection - biological features, transmission, symptoms, diagnosis and treatment. Intech Open 2018.
  79. Liu J, Wang M, Gan L, Yang S, Chen J. Genotyping of clinical varicella-zoster virus isolates collected in China. J Clin Microbiol. 2009; 47: 1418-1423. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19244468
  80. Kim KH, Choi YJ, Song KH, Park WB, Jeon JH, et al. Genotype of varicellazoster virus isolates in South Korea. J Clin Microbiol. 2011; 49: 1913-1916. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21411584
  81. Bostikova V, Salavec M, Smetana J, Chlibek R, Kosina P, et al. Genotyping of varicella-zoster virus (VZV) wild-type strains isolated in the Czech Republic. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2011; 155: 379-384. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22336652
  82. Loparev V, Martro E, Rubtcova E, Rodrigo C, Piette JC, et al. Toward universal varicella-zoster virus (VZV) genotyping: diversity of VZV strains from France and Spain. J Clin Microbiol. 2007; 45: 559-563. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17135433
  83. Zell R, Taudien S, Pfaff F, Wutzler P, Platzer M, et al. Sequencing of 21 varicella-zoster virus genomes reveals two novel genotypes and evidence of recombination. J Virol. 2012; 86: 1608-1622. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22130537
  84. Breuer J, Grose C, Norberg P, Tipples G, Schmid DS. A proposal for a common nomenclature for viral clades that form the species varicella-zoster virus: summary of VZV Nomenclature Meeting 2008, Barts and the London School of Medicine and Dentistry. J Gen Virol. 2010; 91: 821-828. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20071486
  85. Sauerbrei A, Zell R, Philipps A, Wutzler P. Genotypes of varicella-zoster virus wild-type strains in Germany. J Med Virol. 2008; 80: 1123-1130. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18428135
  86. Loparev VN, Rubtcova EN, Bostik V, Tzaneva V, Sauerbrei A, et al. Distribution of varicella-zoster virus (VZV) wild-type genotypes in Northern and Southern Europe: Evidence for high conservation of circulating genotypes. Virology. 2009; 383: 216-225. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19019403
  87. Loparev VN, Rubtcova EN, Bostik V, Govil D, Birch CJ, et al. Identification of five major and two minor genotypes of varicella-zoster virus strains: a practical two-amplicon approach used to genotype clinical isolates in Australia and New Zealand. J Virol. 2007; 81: 12758-12765. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17898056
  88. Toi CS, Dwyer DE. Prevalence of varicella-zoster virus genotypes in Australia characterized by high-resolution melt analysis and ORF22 gene analyses. J Med Microbiol. 2010; 59: 935-940. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20466839
  89. Buckingham EM, Jarosinski KW, Jackson W, Carpenter JE, Grose C. Exocytosis of varicella-zoster virus virions involves a convergence of endosomal and autophagy pathways. J Virol. 2016; 90: 8673-8685. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27440906
  90. Freer G, Pistello M. Varicella-zoster virus infection: natural history, clinical manifestations, immunity and current and future vaccination strategies. New Microbiol. 2018; 41: 95-105. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29498740
  91. Shaw J, Gershon AA. Varicella virus vaccination in the United States. Viral Immunol. 2018; 31: 96-103. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29173081
  92. Cohrs RJ, Lee KS, Beach A, Sanford B, Baird NL, et al. Targeted genome sequencing reveals varicella-zoster virus open reading frame 12 deletion. J Virol. 2017; 91. 01141-01147. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28747504
  93. Gershon M, Gershon A. Varicella-zoster virus and the enteric nervous system. J. Infect. Dis. 2018; 218: 113-119. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30247599
  94. Ruyechan WT. Roles of cellular transcription factors in VZV replication. Curr Top Microbiol Immunol. 2010; 342: 43-65. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20490778
  95. Grigoryan S, Yee MB, Glick Y, Gerber D, Kepten E, et al. Direct transfer of viral and cellular proteins from varicella-zoster virus-infected non-neuronal cells to human axons. PLoS One. 2015; 10: 0126081.
  96. Ambagala AP, Bosma T, Ali MA, Poustovoitov M, Chen JJ, et al. Varicellazoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3.1 and h3.3. J Virol. 2009; 83: 200-209.
  97. Silmon de Monerri NC, Kim K. Pathogens hijack the epigenome: a new twist on host-pathogen interactions. Am J Pathol. 2014; 184: 897-911. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24525150
  98. Narayanan A, Nogueira ML, Ruyechan WT, Kristie TM. Combinatorial transcription of herpes simplex virus and varicella zoster virus immediate early genes is strictly determined by the cellular coactivator HCF-1. J Biol Chem. 2005; 280: 1369-1375. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15522876
  99. Sadeghipour S, Mathias RA. Herpesviruses hijack host exosomes for viral pathogenesis. Semin Cell Dev Biol. 2017; 67: 91-100. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28456604
  100. Tavalai N, Stamminger T. Interplay between herpesvirus infection and host defense by PML nuclear bodies. Viruses. 2009; 1: 1240-1264. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21994592
  101. Reichelt M, Brady J, Arvin AM. The replication cycle of varicella-zoster virus: analysis of the kinetics of viral protein expression, genome synthesis, and virion assembly at the single-cell level. J Virol. 2009; 83: 3904-3918. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19193797
  102. Yamamoto T, Ali MA, Liu X, Cohen JI. Activation of H2AX and ATM in varicella-zoster virus (VZV)-infected cells is associated with expression of specific VZV genes. Virology. 2014; 453: 52-58. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24606682
  103. Leisenfelder SA, Moffat JF. Varicella-zoster virus infection of human foreskin fibroblast cells results in atypical cyclin expression and cyclin-dependent kinase activity. J Virol. 2006; 80: 5577-5587. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16699039
  104. Depledge DP, Ouwendijk WJD, Sadaoka T, Braspenning SE, Mori Y, et al. A spliced latency-associated VZV transcript maps antisense to the viral transactivator gene 61. Nat Commun. 2018; 9: 1167. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29563516
  105. Yang M, Hay J, Ruyechan WT. The DNA element controlling expression of the varicella-zoster virus open reading frame 28 and 29 genes consists of two divergent unidirectional promoters which have a common USF site. J Virol. 2004; 78: 10939-10952. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15452214
  106. Leisenfelder SA, Kinchington PR, Moffat JF. Cyclin-dependent kinase 1/cyclin B1 phosphorylates varicella-zoster virus IE62 and is incorporated into virions. J Virol. 2008; 82: 12116-12125. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18799590
  107. Münz C. The autophagic machinery in viral exocytosis. Front Microbiol. 2017; 8: 269. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28270807
  108. Buckingham EM, Carpenter JE, Jackson W, Zerboni L, Arvin AM, et al. Autophagic flux without a block differentiates varicella-zoster virus infection from herpes simplex virus infection. Proc Natl Acad Sci USA. 2015; 112: 256-261. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25535384
  109. Buckingham EM, Jarosinski KW, Jackson W, Carpenter JE, Grose C. Exocytosis of varicella-zoster virus virions involves a convergence of endosomal and autophagy pathways. J Virol. 2016; 90: 8673-8685. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27440906
  110. Pleet ML, Branscome H, DeMarino C, Pinto DO, Zadeh MA, et al. Autophagy, EVs, and infections: a perfect question for a perfect time. Front Cell Infect Microbiol. 2018; 8: 362. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30406039
  111. Graybill C, Morgan MJ, Levin MJ, Lee KS. Varicella-zoster virus inhibits autophagosome-lysosome fusion and the degradation stage of mTOR-mediated autophagic flux. Virology. 2018; 522: 220-227. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30053655
  112. Guise AJ, Budayeva HG, Diner BA, Cristea IM. Histone deacetylases in herpesvirus replication and virus-stimulated host defense. Viruses. 2013; 5: 1607-1632. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23807710
  113. Adhya D, Basu A. Epigenetic modulation of host: new insights into immune evasion by viruses. J Biosci. 2010; 35: 647-663. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21289446
  114. Lieberman PM. Epigenetics and genetics of viral latency. Cell Host Microbe. 2016; 19: 619-628. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27173930
  115. Liang Y, Vogel JL, Narayanan A, Peng H, Kristie TM. Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat Med. 2009; 15: 1312-1317. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19855399
  116. Van Opdenbosch N, Favoreel H, Van de Walle GR. Histone modifications in herpesvirus infections. Biol Cell. 2012; 104: 139-164.
  117. Knipe DM, Lieberman PM, Jung JU, McBride AA, Morris KV, et al. Snapshots: chromatin control of viral infection. Virology. 2013; 435: 141-156. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23217624
  118. Wang Z, Deng Z, Tutton S, Lieberman PM. The telomeric response to viral infection. Viruses. 2017; 9: 218. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28792463
  119. Nehme Z, Pasquereau S, Herbein G. Control of viral infections by epigenetictargeted therapy. Clin Epigenetics. 2019; 11: 55. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30917875
  120. Onozawa M, Hashino S, Takahata M, Fujisawa F, Kawamura T, et al. Relationship between preexisting anti-varicella-zoster virus (VZV) antibody and clinical VZV reactivation in hematopoietic stem cell transplantation recipients. J Clin Microbiol. 2006; 44: 4441-4443. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17035500
  121. Cvjetković D, Jovanović J, Hrnjaković-Cvjetković I, Brkić S, Bogdanović M. Reactivation of herpes zoster infection by varicella-zoster virus. Med Pregl. 1999; 52: 125-128. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10518396
  122. Erskine N, Tran H, Levin L, Ulbricht C, Fingeroth J, et al. A systematic review and meta-analysis on herpes zoster and the risk of cardiac and cerebrovascular events. PLoS One. 2017; 12: 0181565. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28749981
  123. Nagel MA, Gilden D. Complications of varicella zoster virus reactivation. Curr Treat Options Neurol. 2013; 15: 439-453. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24792344
  124. Mueller NH, Gilden DH, Cohrs RJ, Mahalingam R, Nagel MA. Varicella zoster virus infection: clinical features, molecular pathogenesis of disease, and latency. Neurol. Clin. 2008; 26: 675-697. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18657721
  125. Gilden D, Nagel MA, Cohrs RJ, Mahalingam R. The variegate neurological manifestations of varicella zoster virus infection. Curr Neurol Neurosci Rep. 2013; 13: 374. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23884722
  126. Kawai K, Gebremeskel BG, Acosta CJ. Systematic review of incidence and complications of herpes zoster: towards a global perspective. BMJ Open. 2014; 4: 004833. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24916088
  127. Kalogeropoulos CD, Bassukas ID, Moschos MM, Tabbara KF. Eye and periocular skin involvement in herpes zoster infection. Med Hypothesis Discov. Innov Ophthalmol. 2015; 4: 142-156. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27800502
  128. Albrecht MA. Diagnosis of varicella zoster virus infection. Up To Date. 2019.
  129. Sauerbrei A, Taut J, Zell R, Wutzler P. Resistance testing of clinical varicellazoster virus strains. Antiviral Res. 2011; 90: 242-247. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21539861
  130. Hoffmann A, Döring K, Seeger NT, Bühler M, Schacke M, et al. Genetic polymorphism of thymidine kinase (TK) and DNA polymerase (pol) of clinical varicella-zoster virus (VZV) isolates collected over three decades. J Clin Virol. 2017; 95: 61-65. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28886462
  131. Morfin F, Thouvenot D, De Turenne-Tessier M, Lina B, Aymard M, et al. Phenotypic and genetic characterization of thymidine kinase from clinical strains of varicella-zoster virus resistant to acyclovir. Antimicrob Agents Chemother. 1999; 43: 2412-2416. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10508017
  132. Mercier-Darty M, Boutolleau D, Lepeule R, Rodriguez C, Burrel S. Utility of ultra-deep sequencing for detection of varicella-zoster virus antiviral resistance mutations. Antiviral Res. 2018; 151: 20-23. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29337163
  133. De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016; 29: 695-747. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27281742
  134. Andrei G, van den Oord J, Fiten P, Opdenakker G, De Wolf-Peeters C, et al. Organotypic epithelial raft cultures as a model for evaluating compounds against alphaherpesviruses. Antimicrob Agents Chemother. 2005; 49: 4671-4680. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16251311
  135. Mustafa MB, Arduino PG, Porter SR. Varicella zoster virus: review of its management. J Oral Pathol Med. 2009; 38: 673-688. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19691461
  136. Breuer J, Whitley R. Varicella zoster virus: natural history and current therapies of varicella and herpes zoster. Herpes. 2007; 14: 25-29. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17939892
  137. Mullane KM, Nuss C, Ridgeway J, Prichard MN, Hartline CB, et al. Brincidofovir treatment of acyclovir-resistant disseminated varicella zoster virus infection in an immunocompromised host. Transpl Infect Dis. 2016; 18: 785790. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27481400
  138. Stryjewski TP, Scott NL, Barshak MB, Tobin EH, Mali JO, et al. Treatment of refractory acute retinal necrosis with intravenous foscarnet or cidofovir. Ocul Immunol Inflamm. 2018; 26: 199-203. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27598973
  139. Wong R, Pavesio CE, Laidlaw DA, Williamson TH, Graham EM, et al. Acute retinal necrosis: the effects of intravitreal foscarnet and virus type on outcome. Ophthalmology. 2010; 117: 556-560. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20031221
  140. Schoenberger SD, Kim SJ, Thorne JE, Mruthyunjaya P, Yeh S, et al. Diagnosis and treatment of acute retinal necrosis: a report by the American academy of ophthalmology. Ophthalmology. 2017; 124: 382-392. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28094044
  141. Inoue N, Matsushita M, Fukui Y, Yamada S, Tsuda M, et al. Identification of a varicella-zoster virus replication inhibitor that blocks capsid assembly by interacting with the floor domain of the major capsid protein. J Virol. 2012; 86: 12198-12207. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22933294
  142. McGuigan C, Pathirana RN, Migliore M, Adak R, Luoni G, et al. Preclinical development of bicyclic nucleoside analogues as potent and selective inhibitors of varicella zoster virus. J Antimicrob Chemother. 2007; 60: 1316-1330. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17956908
  143. McGuigan, C.; Balzarini, J. Aryl furano pyrimidines: the most potent and selective anti-VZV agents reported to date. Antiviral. Res. 2006; 71: 149-153. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16712966
  144. Balzarini J, McGuigan C. Chemotherapy of varicella-zoster virus by a novel class of highly specific anti-VZV bicyclic pyrimidine nucleosides. Biochim Biophys Acta. 2002; 1587: 287-295. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12084470
  145. Balzarini J, McGuigan C. Bicyclic pyrimidine nucleoside analogues (BCNAs) as highly selective and potent inhibitors of varicella-zoster virus replication. J Antimicrob Chemother. 2002; 50: 5-9. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12096000
  146. Migliore M. FV-100: the most potent and selective anti-varicella zoster virus agent reported to date. Antivir Chem Chemother. 2010; 20: 107-115. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20054098
  147. Kim S.R, Khan F, Ramirez-Fort MK, Downing C, Tyring SK. Varicella zoster: an update on current treatment options and future perspectives. Expert Opin Pharmacother. 2014; 15: 61-71. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24289750
  148. Johnson RW. Herpes zoster in the immunocompetent patient: management of post-herpetic neuralgia. Herpes. 2003; 10: 38-45. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14577953
  149. Wang L, Zhu L, Zhu H. Efficacy of varicella (VZV) vaccination: an update for the clinician. Ther Adv Vaccines. 2016; 4: 20-31. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27551429
  150. Haberthur K, Messaoudi I. Animal models of varicella zoster virus infection. Pathogens. 2013; 2: 364-382. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25437040
  151. Harada K, Heaton H, Chen J, Vazquez M, Meyer J. Zoster vaccine-associated primary varicella infection in an immunocompetent host. BMJ Case Rep. 2017; 2017: PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28830902
  152. Gabutti G, Bonanni P, Conversano M, Fanelli G, Franco E, et al. Prevention of herpes zoster and its complications: from clinical evidence to real life experience. Hum Vaccin Immunother. 2017; 13: 391-398. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27925894
  153. Warren-Gash C, Forbes H, Breuer J. Varicella and herpes zoster vaccine development: lessons learned. Expert Rev. Vaccines. 2017; 16: 1191-1201. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29047317
  154. Papaloukas O, Giannouli G, Papaevangelou V. Successes and challenges in varicella vaccine. Ther Adv Vaccines. 2014; 2: 39-55. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24757524
  155. Arnold N, Messaoudi I. Herpes zoster and the search for an effective vaccine. Clin Exp Immunol. 2017; 187: 82-92. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27164323
  156. Willis ED, Woodward M, Brown E, Popmihajlov Z, Saddier P, et al. Herpes zoster vaccine live: a 10 year review of post-marketing safety experience. Vaccine. 2017; 35: 7231-7239. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29174682
  157. Leung J, Broder KR, Marin M. Severe varicella in persons vaccinated with varicella vaccine (breakthrough varicella): a systematic literature review. Expert Rev Vaccines. 2017; 16: 391-400. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28276305
  158. Khandelwal P, Marsh RA, Scott Scmid D, Radford KW, Bleesing J, et al. Case series of vaccine associated varicella zoster virus infection in immune compromised patients. Biol Blood Marrow Transplant. 2013; 19: 250.
  159. Bhalla P, Forrest GN, Gershon M, Zhou Y, Chen J, et al. Disseminated, persistent, and fatal infection due to the vaccine strain of varicella-zoster virus in an adult following stem cell transplantation. Clin Infect Dis. 2015; 60: 10681074. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25452596
  160. Wang L, Verschuuren EAM, van Leer-Buter CC, Bakker SJL, de Joode AAE, et al. Herpes zoster and immunogenicity and safety of zoster vaccines in transplant patients: a narrative review of the literature. Front Immunol. 2018; 9: 1632. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30079064
  161. Aoki T, Koh K, Kawano Y, Mori M, Arakawa Y, et al. Safety of live attenuated high-titer varicella-zoster virus vaccine in pediatric allogeneic hematopoietic stem cell transplantation recipients. Biol Blood Marrow Transplant. 2016; 22: 771-775. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26748161
  162. Chou JF, Kernan NA, Prockop S, Heller G, Scaradavou A, et al. Safety and immunogenicity of the live attenuated varicella vaccine following T replete or T cell-depleted related and unrelated allogeneic hematopoietic cell transplantation (alloHCT). Biol Blood Marrow Transplant. 2011; 17: 1708-1713. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21664979
  163. Winston DJ, Mullane KM, Cornely OA, Boeckh MJ, Brown JW, et al. V212 Protocol 001 Trial Team. Inactivated varicella zoster vaccine in autologous haemopoietic stem-cell transplant recipients: An international, multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2018; 391: 2116-2127. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29856344
  164. Stadtmauer EA, Sullivan K, Marty F, Dadwal SS, Papanicolaou GA, et al. One-year safety and immunogenicity of two formulations of an adjuvanted varicella-zoster virus (VZV) subunit candidate vaccine in adult autologous hematopoietic cell transplant (HCT) recipients. Biol Blood Marrow Transplant. 2013; 19: 168-169.
  165. Issa NC, Marty FM, Leblebjian H, Galar A, Shea MM, et al. Live attenuated varicella-zoster vaccine in hematopoietic stem cell transplantation recipients. Biol. Blood Marrow Transplant. 2014; 20: 285-287. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24269706
  166. Sasadeusz J, Prince HM, Schwarer A, Szer J, Stork A, et al. Immunogenicity and safety of a two-dose live attenuated varicella vaccine given to adults following autologous hematopoietic stem cell transplantation. Transpl Infect Dis. 2014; 16: 1024-1031. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25272081
  167. Parrino J, McNeil SA, Lawrence SJ, Kimby E, Pagnoni MF, et al. Safety and immunogenicity of inactivated varicella-zoster virus vaccine in adults with hematologic malignancies receiving treatment with anti-CD20 monoclonal antibodies. Vaccine. 2017; 35: 1764-1769. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28268074
  168. Leung TF, Li CK, Hung EC, Chan PK, Mo CW, et al. Immunogenicity of a two-dose regime of varicella vaccine in children with cancers. Eur J Haematol. 2004; 72: 353-357. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15059071
  169. Ohfuji S, Ito K, Inoue M, Ishibashi M, Kumashiro H, et al. Safety of live attenuated varicella-zoster vaccine in patients with underlying illnesses compared with healthy adults: a prospective cohort study. BMC Infect Dis. 2019; 19: 95. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30691396
  170. Eberhardson M, Hall S, Papp KA, Sterling TM, Stek JE, et al. Safety and immunogenicity of inactivated varicella-zoster virus vaccine in adults with autoimmune disease: a phase 2, randomized, double-blind, placebo-controlled clinical trial. Clin Infect Dis. 2017; 65: 1174-1182. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29126292
  171. Russell AF, Parrino J, Fisher CL Jr, Spieler W, Stek JE, et al. Safety, tolerability, and immunogenicity of zoster vaccine in subjects on chronic/maintenance corticosteroids. Vaccine. 2015; 33: 3129-3134. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25964168
  172. Senderovich H, Grewal J, Mujtaba M. Herpes zoster vaccination efficacy in the long-term care facility population: a qualitative systematic review. Curr Med Res Opin. 2019: 1-12. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30913912
  173. Mills R, Tyring SK, Levin MJ, Parrino J, Li X, et al. Safety, tolerability, and immunogenicity of zoster vaccine in subjects with a history of herpes zoster. Vaccine. 2010; 28: 4204-4209. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20416263
  174. Santos KB, Souza RS, Atalla A, Hallack-Neto AE. Herpes zoster after autologous hematopoietic stem cell transplantation. Rev Bras Hematol Hemoter. 2016; 38: 298-301. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27863756
  175. Truong Q, Veltri L, Kanate AS, Hu Y, Craig M, et al. Impact of the duration of antiviral prophylaxis on rates of varicella-zoster virus reactivation disease in autologous hematopoietic cell transplantation recipients. Ann Hematol. 2014; 93: 677-682. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24097085
  176. Wada-Shimosato Y, Tanoshima R, Hiratoko K, Takeuchi M, Tsujimoto SI, et al. Effectiveness of acyclovir prophylaxis against varicella zoster virus disease after allogeneic hematopoietic cell transplantation: a systematic review and metaanalysis. Transpl Infect Dis. 2019; 13061.
  177. Okuma HS, Kobayashi Y, Makita S, Kitahara H, Fukuhara S, et al. Disseminated herpes zoster infection initially presenting with abdominal pain in patients with lymphoma undergoing conventional chemotherapy: a report of three cases. Oncol Lett. 2016; 12: 809-814. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27446355
  178. Sahoo F, Hill JA, Xie H, Leisenring W, Yi J, Goyal S, et al. Herpes zoster in autologous hematopoietic cell transplant recipients in the era of acyclovir or valacyclovir prophylaxis and novel treatment and maintenance therapies. Biol Blood Marrow Transplant. 2017; 23: 505-511. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28039754
  179. Kim SK, Kim MC, Han SB, Kim SK, Lee JW, et al. Clinical characteristics and outcomes of varicella zoster virus infection in children with hematologic malignancies in the acyclovir era. Blood Res. 2016; 51: 249-255. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28090487
  180. Kanda Y, Mineishi S, Saito T, Saito A, Yamada S, et al. Long-term low-dose acyclovir against varicella-zoster virus reactivation after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001; 28: 689-692. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11704792
  181. Asano-Mori Y, Kanda Y, Oshima K, Kako S, Shinohara A, et al. Long-term ultra-low-dose acyclovir against varicella-zoster virus reactivation after allogeneic hematopoietic stem cell transplantation. Am J Hematol. 2008; 83: 472-476. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18266207
  182. Han SB, Kim SK, Lee JW, Lee DG, Chung NG, et al. Varicella zoster virus infection after allogeneic hematopoietic cell transplantation in children using a relatively short duration of acyclovir prophylaxis: a retrospective study. Medicine. 2017; 96: 6546. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28383421
  183. Goodwin TJ, McCarthy M, Osterrieder N, Cohrs RJ, Kaufer BB. Three dimensional normal human neural progenitor tissue-like assemblies: a model of persistent varicella-zoster virus infection. PLoS Pathog. 2013; 9: 1003512. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23935496
  184. Shahzad A, Gilden D, Cohrs RJ. Translational medicine and varicella zoster virus: need for disease modeling. New Horiz Transl Med. 2015; 2: 89-91. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26086038
  185. Messaoudi I, Barron A, Wellish M, Engelmann F, Legasse A, et al. Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella zoster virus infection in humans. PLoS Pathog. 2009; 5: 1000657. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19911054
  186. Steain M, Slobedman B, Abendroth A. Experimental models to study varicella-zoster virus infection of neurons. Curr Top Microbiol Immunol. 2010; 342: 211-228. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20373093
  187. White TM, Gilden DH, Mahalingam R. An animal model of varicella virus infection. Brain Pathol. 2001; 11: 475-479. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11556693
  188. Moffat JF, Zerboni L, Sommer MH, Heineman TC, Cohen JI, et al. The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse. Proc Natl Acad Sci USA. 1998; 95: 11969-11974. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9751774
  189. Zerboni L, Sung P, Sommer M, Arvin A. The C-terminus of varicella-zoster virus glycoprotein M contains trafficking motifs that mediate skin virulence in the SCID-human model of VZV pathogenesis. Virology. 2018; 523: 110-120. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30119012
  190. Lee KS, Zhou W, Scott-McKean JJ, Emmerling KL, Cai GY, et al. Human sensory neurons derived from induced pluripotent stem cells support varicellazoster virus infection. PLoS One. 2012; 7: 53010. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23285249
  191. Markus A, Lebenthal-Loinger I, Yang IH, Kinchington PR, Goldstein RS. An in vitro model of latency and reactivation of varicella zoster virus in human stem cell-derived neurons. PLoS Pathog. 2015; 11: 1004885. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26042814
  192. Sadaoka T, Schwartz CL, Rajbhandari L, Venkatesan A, Cohen JI. Human embryonic stem cell-derived neurons are highly permissive for varicella-zoster virus lytic infection. J Virol. 2017; 92: 01108-01117. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29046461
  193. Dukhovny A, Sloutskin A, Markus A, Yee MB, Kinchington PR, et al. Varicella-zoster virus infects human embryonic stem cell-derived neurons and neurospheres but not pluripotent embryonic stem cells or early progenitors. J Virol. 2012; 86: 3211-3218. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22238301
  194. Sloutskin A, Kinchington PR, Goldstein RS. Productive vs non-productive infection by cell-free varicella zoster virus of human neurons derived from embryonic stem cells is dependent upon infectious viral dose. Virology. 2013; 443: 285-293. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23769240
  195. Birenboim R, Markus A, Goldstein RS. Simple generation of neurons from human embryonic stem cells using agarose multiwell dishes. J Neurosci Methods. 2013; 214: 9-14. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23313848
  196. Baird NL, Zhu S, Pearce CM, Viejo-Borbolla A. Current in vitro models to study varicella zoster virus latency and reactivation. Viruses. 2019; 11: 103. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30691086
  197. Como CN, Pearce CM, Cohrs RJ, Baird NL. Interleukin-6 and type 1 interferons inhibit varicella zoster virus replication in human neurons. Virology. 2018; 522: 13-18. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29979960
  198. Baird NL, Bowlin JL, Hotz TJ, Cohrs RJ, Gilden D. Interferon gamma prolongs survival of varicella-zoster virus-infected human neurons in vitro. J Virol. 2015; 89: 7425-7427. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25948748
  199. Li X, Li X, Gong W, Wang G, Lu Z, Wu N, et al. Titration of cell-associated varicella-zoster virus with the MV9G reporter cell line for antiviral studies. J Virol Methods. 2018; 260: 14-20. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29966597
  200. Wang GQ, Suzutani T, Yamamoto Y, Fukui Y, Nozawa N, et al. Generation of a reporter cell line for detection of infectious varicella-zoster virus and its application to antiviral studies. Antimicrob Agents Chemother. 2006; 50: 3142-3145. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16940113
  201. Sloutskin A, Goldstein RS. Laboratory preparation of varicella-zoster virus: concentration of virus-containing supernatant, use of a debris fraction and magnetofection for consistent cell-free VZV infections. J Virol Methods. 2014; 206: 128-132. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24925132
  202. Kumar R, Godavarthy PS, Krause DS. The bone marrow microenvironment in health and disease at a glance. J Cell Sci. 2018; 131: 201707. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29472498
  203. Ghazanfari B, Behrava J. An update on the components and functions of bone marrow niche. Ann Hematol Oncol. 2017; 4: 1178.
  204. Chitteti BR, Cheng YH, Poteat B, Rodriguez-Rodriguez S, Goebel WS, et al. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood. 2010; 115: 3239-3248. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20154218
  205. Anthony BA, Link DC. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol. 2014; 35:32-37. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24210164
  206. Huang X, Zhu B, Wang X, Xiao R, Wang C. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche. Int J Mol Med. 2016; 38: 1141-1151. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27571775
  207. Isern J, García-García A, Martín AM, Arranz L, Martín-Pérez D, et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. Elife. 2014; 3: 03696. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25255216
  208. Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, et al. PDGFRα and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013; 210: 1351-1367. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23776077
  209. Lucas D. The bone marrow microenvironment for hematopoietic stem cells. Adv Exp Med Biol. 2017; 1041: 5-18.
  210. Eltoukhy HS, Sinha G, Moore CA, Gergues M, Rameshwar P. Secretome within the bone marrow microenvironment: a basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie. 2018; 155: 92-103. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29859990
  211. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stemcell maintenance. Nature. 2013; 495: 227-230. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23434756
  212. Agarwala S, Tamplin OJ. Neural crossroads in the hematopoietic stem cell niche. Trends Cell Biol. 2018; 28: 987-998. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29857963
  213. Coste C, Neirinckx V, Gothot A, Wislet S, Rogister B. Are neural crest stem cells the missing link between hematopoietic and neurogenic niches? Front Cell Neurosci. 2015; 9: 218. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26136659
  214. Lotem J, Sachs L. Cytokine control of developmental programs in normal hematopoiesis and leukemia. Oncogene. 2002; 21: 3284-3294. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12032770
  215. Ackermann M, Liebhaber S, Klusmann JH, Lachmann N. Lost in translation: pluripotent stem cell-derived hematopoiesis. EMBO Mol Med. 2015; 7: 13881402. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26174486
  216. Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008; 132: 631-644. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18295580
  217. Mirantes C, Passegué E, Pietras EM. Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis. Exp. Cell. Res. 2014; 329: 248-254. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25149680
  218. Glatman Zaretsky A, Engiles JB, Hunter CA. Infection-induced changes in hematopoiesis. J Immunol. 2014; 192: 27-33. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24363432
  219. Metcalf D. Hematopoietic cytokines. Blood. 2008; 111: 485-491.
  220. Boiko JR, Borghesi L. Hematopoiesis sculpted by pathogens: Toll-like receptors and inflammatory mediators directly activate stem cells. Cytokine. 2012; 57: 1-8. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22079335
  221. Zhang CC, Lodish HF. Cytokines regulating hematopoietic stem cell function. Curr Opin                         2008;       15:                 307-311. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18536567
  222. Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell. 2015; 163: 1663-1677. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26627738
  223. Brown G, Ceredig R, Tsapogas P. The making of hematopoiesis: developmental ancestry and environmental nurture. Int J Mol Sci. 2018; 19: 2122. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30037064
  224. Zhao JL, Baltimore D. Regulation of stress-induced hematopoiesis. Curr Opin Hematol. 2015; 22: 286-292. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26049748
  225. Schuettpelz LG, Link DC. Regulation of hematopoietic stem cell activity by inflammation. Front Immunol. 2013; 4: 204. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23882270
  226. Croker BA, Silke J, Gerlic M. Fight or flight: regulation of emergency hematopoiesis by pyroptosis and necroptosis. Curr Opin Hematol. 2015; 22: 293-301. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26049749
  227. Pascutti MF, Erkelens MN, Nolte MA. Impact of viral infections on hematopoiesis: from beneficial to detrimental effects on bone marrow output. Front Immunol. 2016; 7: 364. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27695457
  228. Ardalan MR, Shoja MM, Tubbs RS, Esmaili H, Keyvani H. Postrenal transplant hemophagocytic lymphohistiocytosis and thrombotic microangiopathy associated with parvovirus B19 infection. Am J Transplant. 2008; 8: 1340-1344. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18522549
  229. Simmons P, Kaushansky K, Torok-Storb B. Mechanisms of cytomegalovirusmediated myelosuppression: perturbation of stromal cell function versus direct infection of myeloid cells. Proc Natl Acad Sci USA. 1990; 87: 1386-1390. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2154745
  230. Al-Uzri A, Yorgin PD, Kling PJ. Anemia in children after transplantation: etiology and the effect of immunosuppressive therapy on erythropoiesis. Pediatr Transplant. 2003; 7: 253-264. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12890002
  231. Torok-Storb B, Simmons P, Khaira D, Stachel D, Myerson D. Cytomegalovirus and marrow function. Ann Hematol. 1992; 64: 128-131.
  232. Randolph-Habecker J, Iwata M, Torok-Storb B. Cytomegalovirus mediated myelosuppression. J Clin Virol. 2002; 25: 51-56. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12361756
  233. Movassagh M, Gozlan J, Senechal B, Baillou C, Petit JC, et al. Direct infection of CD34+ progenitor cells by human cytomegalovirus: evidence for inhibition of hematopoiesis and viral replication. Blood. 1996; 88: 1277-1283. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8695845
  234. Sing GK, Ruscetti FW. The role of human cytomegalovirus in haematological diseases. Baillieres Clin Haematol. 1995; 8: 149-163. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7663045
  235. Kakish K, Basak RB, Al Dhuhouri J, Chakraborty S. Four year old child with breakthrough varicella leading to pancytopenia. Bahrain Med Bull. 2009; 31: 2.
  236. Muthu V, Kumar PS, Varma S, Malhotra P. Varicella zoster virus-related pancytopenia. Int J Infect Dis. 2013; 17: 1264. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23911240
  237. Kuskonmaz B, Cetin M, Uckan D, Yetgin S. Varicella zoster-associated severe aplastic anemia in a child and its successful treatment with peripheral blood stem cell transplantation from HLA-5/6-identical donor. Med Sci Monit. 2007; 13: 128-131. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17901857
  238. Ragozzino MW, Melton LJ. Kurland LT, Chu CP, Perry HO. Risk of cancer after herpes zoster: a population-based study. N Engl J Med. 1982; 307: 393-397. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/6979711
  239. Ho JD, Xirasagar S, Lin HC. Increased risk of a cancer diagnosis after herpes zoster ophthalmicus: a nationwide population-based study. Ophthalmology. 2011; 118: 1076-1081. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21232800
  240. Schmidt SA, Mor A, Schønheyder HC, Sørensen HT, Dekkers OM, et al. Herpes zoster as a marker of occult cancer: A systematic review and meta-analysis. J Infect. 2017; 74: 215-235. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27845154
  241. Liu YC, Yang YH, Hsiao HH, Yang WC, Liu TC, et al. Herpes zoster is associated with an increased risk of subsequent lymphoid malignancies - a nationwide population-based matched-control study in Taiwan. BMC Cancer. 2012; 12: 503. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23114019
  242. Mays RM, Murthy RK, Gordon RA, Lapolla WJ, Galfione SK, et al. Diffuse Large B-Cell Lymphoma at the site of a herpes zoster scar. World J Oncol. 2012; 3: 199-203. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29147306
  243. Thanunchai M, Hongeng S, Thitithanyanont A. Mesenchymal stromal cells and viral infection. Stem Cells Int. 2015; 2015: 860950. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26294919
  244. Yang K, Wang J, Wu M, Li M, Wang Y, et al. Mesenchymal stem cells detect and defend against gammaherpesvirus infection via the cGAS-STING pathway. Sci. Rep. 2015; 5: 7820. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25592282
  245. Al-Anazi KA, Al-Jasser AM. Mesenchymal stem cells-their antimicrobial effects and their promising future role as novel therapies of infectious complications in high risk patients. In: Progress in stem cell transplantation. Intech Open. 2015.
  246. Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, et al. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells. 2014; 6: 552-570. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25426252
  247. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, et al. Role for interferongamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006; 24: 386-398. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16123384
  248. Auletta JJ, Deans RJ, Bartholomew AM. Emerging roles for multipotent, bone marrow-derived stromal cells in host defense. Blood. 2012; 119: 18011809. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22228625
  249. Boomsma RA, Geenen DL. Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One. 2012; 7: 35685. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22558198
  250. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010; 466: 829-834. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20703299
  251. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin-receptorexpressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014; 15: 154-168. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24953181
  252. Pleyer L, Valent P, Greil R. Mesenchymal stem and progenitor cells in normal and dysplastic hematopoiesis-masters of survival and clonality? Int J Mol Sci. 2016; 17: 1009. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27355944
  253. Shi C. Recent progress toward understanding the physiological function of bone marrow mesenchymal stem cells. Immunology. 2012; 136: 133-138. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22321024
  254. Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell. 2009; 4: 206-216. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19265660
  255. Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem. 2009; 106: 984-991. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19229871
  256. De Luca L, Trino S, Laurenzana I, Lamorte D, Caivano A, et al. Mesenchymal stem cell derived extracellular vesicles: a role in hematopoietic transplantation? Int J Mol Sci. 2017; 18: 1022. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28486431
  257. Castro-Manrreza ME, Montesinos JJ. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res. 2015; 2015: 394917. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25961059
  258. Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3dioxygenase-mediated tryptophan degradation. Blood. 2004; 103: 4619-4621. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15001472
  259. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003; 75: 389-397. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12589164
  260. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E (2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009; 15: 42-49. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19098906
  261. Abarbanell AM, Coffey AC, Fehrenbacher JW, Beckman DJ, Herrmann JL, et al. Proinflammatory cytokine effects on mesenchymal stem cell therapy for the ischemic heart. Ann Thorac Surg. 2009; 88: 1036-1043. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19699961
  262. Leuning DG, Beijer NRM, du Fossé NA, Vermeulen S, Lievers E, et al. The cytokine secretion profile of mesenchymal stromal cells is determined by surface structure of the microenvironment. Sci Rep. 2018; 8: 7716. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29769543
  263. Rasmusson I, Le Blanc K, Sundberg B, Ringdén O. Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol. 2007; 65: 336-343. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17386024
  264. Avanzi S, Leoni V, Rotola A, Alviano F, Solimando L, et al. Susceptibility of human placenta derived mesenchymal stromal/stem cells to human herpesviruses infection. PLoS One. 2013; 8: 71412. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23940750
  265. Hersh DS, Wadajkar AS, Roberts N, Perez JG, Connolly NP, et al. Evolving drug delivery strategies to overcome the blood brain barrier. Curr Pharm Des. 2016; 22: 1177-1193. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26685681
  266. Abdi Z, Eskandary H, Nematollahi-Mahani SN. Effects of two types of human cells on outgrowth of human glioma in rats. Turk Neurosurg. 2018; 28: 19-28. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27943226
  267. Dong HJ, Li G, Meng HP, Shang CZ, Luo Y, et al. How can mesenchymal stem cells penetrate the blood brain barrier? Turk Neurosurg. 2018; 28: 10131014. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29569697
  268. Conaty P, Sherman LS, Naaldijk Y, Ulrich H, Stolzing A, et al. Methods of mesenchymal stem cell homing to the blood-brain barrier. Methods Mol Biol. 2018; 1842: 81-91. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30196403
  269. Liu L, Eckert MA, Riazifar H, Kang DK, Agalliu D, et al. From blood to the brain: can systemically transplanted mesenchymal stem cells cross the blood-brain barrier? Stem Cells Int. 2013; 2013: 435093. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23997771
  270. Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, et al. Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Res Ther. 2018; 9: 336. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30526687
  271. Lee HY, Hong IS. Double-edged sword of mesenchymal stem cells: Cancerpromoting versus therapeutic potential. Cancer Sci. 2017; 108: 1939-1946. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28756624
  272. Nowakowski A, Drela K, Rozycka J, Janowski M, Lukomska B. Engineered mesenchymal stem cells as an anti-cancer Trojan horse. Stem Cells Dev. 2016; 25: 1513-1531. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27460260
  273. Zhang L, Su XS, Ye JS, Wang YY, Guan Z, et al. Bone marrow mesenchymal stem cells suppress metastatic tumor development in mouse by modulating immune system. Stem Cell Res Ther. 2015; 6: 45. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25889932
  274. Fakiruddin KS, Ghazalli N, Lim MN, Zakaria Z, Abdullah S. Mesenchymal stem cell expressing TRAIL as targeted therapy against sensitised tumor. Int J Mol Sci. 2018; 19: 2188. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30060445
  275. Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology. 2018; 154: 3-20. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29313948
  276. Abendroth A, Morrow G, Cunningham AL, Slobedman B. Varicella-zoster virus infection of human dendritic cells and transmission to T cells: implications for virus dissemination in the host. J Virol. 2001; 75: 6183-6192. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11390620
  277. Morrow G, Slobedman B, Cunningham AL, Abendroth A. Varicella-zoster virus productively infects mature dendritic cells and alters their immune function. J Virol. 2003; 77: 4950-4959. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12663800
  278. Sloan E, Henriquez R, Kinchington PR, Slobedman B, Abendroth A. Varicella-zoster virus inhibition of the NF-κB pathway during infection of human dendritic cells: role for open reading frame 61 as a modulator of NF-κB activity. J Virol. 2012; 86: 1193-202. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22090112
  279. Hu H, Cohen JI. Varicella-zoster virus open reading frame 47 (ORF47) protein is critical for virus replication in dendritic cells and for spread to other cells. Virology. 2005; 337: 304-311. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15913699
  280. Pollara G, Kwan A, Newton PJ, Handley ME, Chain BM, et al. Dendritic cells in viral pathogenesis: protective or defective? Int J Exp Pathol. 2005; 86: 187-204. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16045541
  281. Schönrich G, Raftery MJ. Dendritic cells as Achilles' heel and Trojan horse during varicella zoster virus infection. Front Microbiol. 2015; 6: 417. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26005438
  282. Huch JH, Cunningham AL, Arvin AM, Nasr N, Santegoets SJ, et al. Impact of varicella-zoster virus on dendritic cell subsets in human skin during natural infection. J Virol. 2010; 84: 4060-4072. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20130046
  283. Collins PL, Cella M, Porter SI, Li S, Gurewitz GL, Hong HS, et al. Gene regulatory programs conferring phenotypic identities to human NK cells. Cell. 2019; 176: 348-360. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30595449
  284. Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med. 2015; 47: 141. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25676064
  285. Mehta RS, Randolph B, Daher M, Rezvani K. NK cell therapy for hematologic malignancies. Int J Hematol. 2018; 107: 262-270. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29383623
  286. Handgretinger R, Lang P, André MC. Exploitation of natural killer cells for the treatment of acute leukemia. Blood. 2016; 127: 3341-3349. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27207791
  287. See DM, Khemka P, Sahl L, Bui T, Tilles JG. The role of natural killer cells in viral infections. Scand J Immunol. 1997; 46: 217-224. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9315107
  288. 288 Crinier A, Milpied P, Escalière B, Piperoglou C, Galluso J, et al. High dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice. Immunity. 2018; 49: 971-986. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30413361
  289. Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The broad spectrum of human natural killer cell diversity. Immunity. 2017; 47: 820-833. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29166586
  290. Orr MT, Lanier LL. Natural killer cell education and tolerance. Cell. 2010; 142: 847-856. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20850008
  291. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018; 9: 1869. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30150991
  292. Van Erp EA, van Kampen MR, van Kasteren PB, de Wit J. Viral infection of human natural killer cells. Viruses. 2019; 11: 243. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27160662
  293. Tesi B, Schlums H, Cichocki F, Bryceson YT. Epigenetic regulation of adaptive NK cell diversification. Trends Immunol. 2016; 37: 451-461. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27160662
  294. Barrow AD, Edeling MA, Trifonov V, Luo J, Goyal P, et al. Natural killer cells control tumor growth by sensing a growth factor. Cell. 2018; 172: 534548. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29275861
  295. Dyck L, Lynch L. New job for NK cells: architects of the tumor microenvironment. Immunity. 2018; 48: 9-11. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29343443
  296. Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell. 2018; 172: 1022-1037. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29429633
  297. Chouaib S, Pittari G, Nanbakhsh A, El Ayoubi H, Amsellem S, et al. Improving the outcome of leukemia by natural killer cell-based immunotherapeutic strategies. Front Immunol. 2014; 5: 95. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24672522
  298. Mehta RS, Rezvani K. Chimeric antigen receptor expressing natural killer cells for the immunotherapy of cancer. Front Immunol. 2018; 9: 283. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29497427
  299. Cooley S, Parham P, Miller JS. Strategies to activate NK cells to prevent relapse and induce remission following hematopoietic stem cell transplantation. Blood. 2018; 131: 1053-1062. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29358179
  300. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002; 295: 2097-2100. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11896281
  301. Waggoner SN, Reighard SD, Gyurova IE, Cranert SA, Mahl SE, et al. Roles of natural killer cells in antiviral immunity. Curr Opin Virol. 2016; 16: 15-23. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26590692
  302. Hammer Q, Romagnani C. About training and memory: NK-cell adaptation to viral infections. Adv Immunol. 2017; 133: 171-207. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28215279
  303. Campbell TM, McSharry BP, Steain M, Ashhurst TM, Slobedman B, et al. Varicella zoster virus productively infects human natural killer cells and manipulates phenotype. PLoS Pathog. 2018; 14: e1006999. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29709039
  304. Weinberg A, Levin MJ. VZV T cell-mediated immunity. Curr Top Microbiol Immunol. 2010; 342: 341-357. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20473790
  305. Frey CR, Sharp MA, Min AS, Schmid DS, Loparev V, et al. Identification of CD8+ T cell epitopes in the immediate early 62 protein (IE62) of varicella-zoster virus, and evaluation of frequency of CD8+ T cell response to IE62, by use of IE62 peptides after varicella vaccination. J Infect Dis. 2003; 188: 40-52. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12825169
  306. Kim AR, Park J, Kim JH, Kwak JE, Cho Y, et al. Herpes zoster DNA vaccines with IL-7 and IL-33 molecular adjuvants elicit protective T cell immunity. Immune Netw. 2018; 18: e38. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30402333
  307. van Besouw NM, Verjans GM, Zuijderwijk JM, Litjens NH, Osterhaus AD, et al. Systemic varicella zoster virus reactive effector memory T-cells impaired in the elderly and in kidney transplant recipients. J Med Virol. 2012; 84: 2018-2025. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23080511
  308. Qi Q, Cavanagh MM, Le Saux S, Wagar LE, Mackey S, et al. Defective T memory cell differentiation after varicella zoster vaccination in older individuals. PLoS Pathog. 2016; 12: e1005892. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27764254
  309. Vukmanovic-Stejic M, Sandhu D, Seidel JA, Patel N, Sobande TO, et al. The characterization of varicella zoster virus-specific T cells in skin and blood during aging. J Invest Dermatol. 2015; 135: 1752-1762. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25734814
  310. Arvin AM. Cell-mediated immunity to varicella-zoster virus. J Infect Dis. 1992; 166: 35-41.
  311. Kleemann P, Distler E, Wagner EM, Thomas S, Klobuch S, et al. Varicellazoster virus glycoproteins B and E are major targets of CD4+ and CD8+ T cells reconstituting during zoster after allogeneic transplantation. Haematologica. 2012; 97: 874-82.
  312. Distler E, Schnürer E, Wagner E, von Auer C, Plachter B, et al. Recovery of varicella-zoster virus-specific T cell immunity after T cell-depleted allogeneic transplantation requires symptomatic virus reactivation. Biol Blood Marrow Transplant. 2008; 14: 1417-1424. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19041065
  313. Diaz PS, Smith S, Hunter E, Arvin AM. T lymphocyte cytotoxicity with natural varicella-zoster virus infection and after immunization with live attenuated varicella vaccine. J Immunol. 1989; 142: 636-641. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2536059
  314. Laing KJ, Russell RM, Dong L, Schmid DS, Stern M, et al. Zoster vaccination increases the breadth of CD4+ T cells responsive to varicella zoster virus. J Infect Dis. 2015; 212: 1022-1031. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25784732
  315. Haberthur K, Engelmann F, Park B, Barron A, Legasse A, et al. CD4 T cell immunity is critical for the control of simian varicella virus infection in a nonhuman primate model of VZV infection. PLoS Pathog. 2011; 7: e1002367. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22102814
  316. van der Heiden PL, de Boer R, van der Steen DM, Kester MG, van der Hoorn MW, et al. Identification of varicella-zoster virus-specific CD8 T cells in patients after T-cell-depleted allogeneic stem cell transplantation. J Virol. 2009; 83: 7361-7364. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19386715
  317. Arvin AM, Sharp M, Smith S, Koropchak CM, Diaz PS, et al. Equivalent recognition of a varicella-zoster virus immediate early protein (IE62) and glycoprotein I by cytotoxic T lymphocytes of either CD4+ or CD8+ phenotype. J Immunol. 1991; 146: 257-264. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1670603
  318. Jenkins DE, Yasukawa LL, Bergen R, Benike C, Engleman EG, et al. Comparison of primary sensitization of naive human T cells to varicella-zoster virus peptides by dendritic cells in vitro with responses elicited in vivo by varicella vaccination. J Immunol. 1999; 162: 560-567. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9886433
  319. Merindol N, Salem Fourati I, Brito RM, Grenier AJ, Charrier E, et al. Reconstitution of protective immune responses against cytomegalovirus and varicella zoster virus does not require disease development in pediatric recipients of umbilical cord blood transplantation. J Immunol. 2012; 189: 5016-5028. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23034171
  320. Kennedy JJ, Steain M, Slobedman B, Abendroth A. Infection and functional modulation of human monocytes and macrophages by varicella-zoster virus. J Virol. 2019; 93: e01887-18. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30404793
  321. Jones D, Como CN, Jing L, Blackmon A, Neff CP, et al. Varicella zoster virus productively infects human peripheral blood mononuclear cells to modulate expression of immunoinhibitory proteins and blocking PD-L1 enhances virusspecific CD8+ T cell effector function. PLoS Pathog. 2019; 15: e1007650. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30870532
  322. White TM, Gilden DH. Varicella virus-mononuclear cell interaction. Adv Virus Res. 2003; 62: 1-17. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3035815
  323. Gilden DH, Hayward AR, Krupp J, Hunter-Laszlo M, Huff JC, et al. Varicella-zoster virus infection of human mononuclear cells. Virus Res. 1987; 7: 117-129. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/3035815
  324. Wang JP, Kurt-Jones EA, Shin OS, Manchak MD, Levin MJ, et al. Varicellazoster virus activates inflammatory cytokines in human monocytes and macrophages via Toll-like receptor 2. J Virol. 2005; 79: 12658-12666. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16188968
  325. Yu HR, Huang HC, Kuo HC, Sheen JM, Ou CY, et al. IFN-α production by human mononuclear cells infected with varicella-zoster virus through TLR9dependent and -independent pathways. Cell Mol Immunol. 2011; 8: 181-188. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21317915
  326. Baba M, Shigeta S. Incomplete growth of varicella-zoster virus in human monocytes. Microbiol Immunol. 1983; 27: 767-777. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/6316116
  327. Devlin ME, Gilden DH, Mahalingam R, Dueland AN, Cohrs R. Peripheral blood mononuclear cells of the elderly contain varicella-zoster virus DNA. J Infect. Dis. 1992; 165: 619-622. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1313066
  328. Ordoñez G, Pineda B, Garcia-Navarrete R, Sotelo J. Brief presence of varicella-zoster viral DNA in mononuclear cells during relapses of multiple sclerosis. Arch Neurol. 2004; 61: 529-532. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15096401
  329. Vafai A, Wellish M, Gilden DH. Expression of varicella-zoster virus in blood mononuclear cells of patients with postherpetic neuralgia. Proc Natl Acad Sci USA. 1988; 85(8): 2767-2770. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2833752
  330. Gilden DH, Devlin M, Wellish M, Mahalingham R, Huff C, et al. Persistence of varicella-zoster virus DNA in blood mononuclear cells of patients with varicella or zoster. Virus Genes. 1989; 2: 299-305. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/2554580
  331. Visalli MA, House BL, Selariu A, Zhu H, Visalli RJ. The varicella-zoster virus portal protein is essential for cleavage and packaging of viral DNA. J Virol. 2014; 88: 7973-7986. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24807720
  332. Riva L, Thiry M, Bontems S, Joris A, Piette J, et al. ORF9p phosphorylation by ORF47p is crucial for the formation and egress of varicella-zoster virus viral particles. J Virol. 2013; 87: 2868-2881. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23269791
  333. González-Motos V, Jürgens C, Ritter B, Kropp KA, Durán V, et al. Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration. PLoS Pathog. 2017; 13: e1006346. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28542541
  334. Xia D, Srinivas S, Sato H, Pesnica L, Straus SE, et al. Varicella-zoster virus open reading frame 21, which is expressed during latency, is essential for virus replication but dispensable for establishment of latency. J Virol. 2003; 77: 1211–1218. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12502838
  335. Gary L, Gilden DH, Cohrs RJ. Epigenetic regulation of varicella-zoster virus open reading frames 62 and 63 in latently infected human trigeminal ganglia. J Virol. 2006; 80: 4921-4926. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16641283
  336. Cohen JI, Cox E, Pesnicak L, Srinivas S, Krogmann T. The varicella-zoster virus open reading frame 63 latency-associated protein is critical for establishment of latency. J Virol. 2004; 78: 11833-11840. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15479825
  337. Gerada C, Steain M, McSharry BP, Slobedman B, Abendroth A. Varicellazoster virus ORF63 protects human neuronal and keratinocyte cell lines from apoptosis and changes its localization upon apoptosis induction. J Virol. 2018; 92: e00338-18. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29593042
  338. Walters MS, Kyratsous CA, Silverstein SJ. The RING finger domain of varicella-zoster virus ORF61p has E3 ubiquitin ligase activity that is essential for efficient autoubiquitination and dispersion of Sp100-containing nuclear bodies. J Virol. 2010; 84: 6861-6865. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20392849
  339. Epub 2010 Apr 14. 339. Zhang Z, Selariu A, Warden C, Huang G, Huang Y, et al. Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor. PLoS Pathog. 2010; 6 (7): e1000971. DOI: 10.1371/journal.ppat.1000971.
  340. Cohrs RJ, Lee KS, Beach A, Sanford B, Baird NL, et al. Targeted genome sequencing reveals varicella-zoster virus open reading frame 12 deletion. J Virol. 2017; 91: e01141-17. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28747504
  341. Vizoso Pinto MG, Pothineni VR, Haase R, Woidy M, Lotz-Havla AS, et al. Varicella zoster virus ORF25 gene product: an essential hub protein linking encapsidation proteins and the nuclear egress complex. J Proteome Res. 2011; 10: 5374-5382. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21988664
  342. Lebrun M, Lambert J, Riva L, Thelen N, Rambout X, et al. Varicella-zoster virus ORF9p binding to cellular adaptor protein Complex 1 is important for viral infectivity. J Virol. 2018; 92: e00295-18. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29793951
  343. Oliver SL, Yang E, Arvin AM. Varicella-zoster virus glycoproteins: entry, replication, and pathogenesis. Curr Clin Microbiol Rep. 2016; 3: 204-215. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28367398
  344. Yang E, Arvin AM, Oliver SL. The glycoprotein B cytoplasmic domain lysine cluster is critical for varicella-zoster virus cell-cell fusion regulation and infection. J Virol. 2016; 91: e01707-1716. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27795427
  345. Yamagishi Y, Sadaoka T, Yoshii H, Somboonthum P, Imazawa T, et al. Varicella-zoster virus glycoprotein M homolog is glycosylated, is expressed on the viral envelope, and functions in virus cell-to-cell spread. J Virol. 2008; 82: 795-804. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17977964
  346. Xing Y, Oliver SL, Nguyen T, Ciferri C, Nandi A, et al. A site of varicellazoster virus vulnerability identified by structural studies of neutralizing antibodies bound to the glycoprotein complex gHgL. Proc Natl Acad Sci USA. 2015; 112: 6056-6061. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25918416
  347. Tavalai N, Stamminger T. Interplay between herpesvirus infection and host defense by PML nuclear bodies. Viruses. 2009; 1: 1240-1264. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21994592
  348. Hadjimichael C, Chanoumidou K, Nikolaou C, Klonizakis A, Theodosi GI, et al. Promyelocytic leukemia protein is an essential regulator of stem cell pluripotency and somatic cell reprogramming. Stem Cell Reports. 2017; 8: 1366-1378. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28392218
  349. Nakahara F, Weiss CN, Ito K. The role of PML in hematopoietic and leukemic stem cell maintenance. Int J Hematol. 2014; 100: 18-26. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24488785
  350. Wang L, Oliver SL, Sommer M, Rajamani J, Reichelt M, et al. Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin. PLoS Pathog. 2011; 7: e1002157. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21901090
  351. Lallemand-Breitenbach V, de Thé H. PML nuclear bodies. Cold Spring Harb Perspect Biol. 2010; 2: a000661. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20452955
  352. Reichelt M, Wang L, Sommer M, Perrino J, Nour AM, et al. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog. 2011; 7: e1001266. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21304940
  353. El Asmi F, Maroui MA, Dutrieux J, Blondel D, Nisole S, et al. Implication of PMLIV in both intrinsic and innate immunity. PLoS Pathog. 2014; 10: e1003975. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/24586174
  354. Maarifi G, Chelbi-Alix MK, Nisole S. PML control of cytokine signaling. Cytokine Growth Factor Rev. 2014; 25: 551-561. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/24861946
  355. Hristozova N, Tompa P, Kovacs D. A novel method for assessing the chaperone activity of proteins. PLoS One. 2016; 11: e0161970. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/27564234
  356. Livingston CM, Ifrim MF, Cowan AE, Weller SK. Virus-induced chaperoneenriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS Pathog. 2009; 5: e1000619. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/19816571
  357. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem. 2013; 82: 323-355. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/23746257
  358. Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperonemediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004; 5: 781-791. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/15459659
  359. Semrad K. Proteins with RNA chaperone activity: a world of diverse proteins with a common task-impediment of RNA misfolding. Biochem Res Int. 2011; 2011: 532908. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/21234377
  360. Horwich AL, Weber-Ban EU, Finley D. Chaperone rings in protein folding and degradation. Proc Natl Acad Sci USA. 1999; 96: 11033-11040. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/10500119
  361. Kyratsous CA, Silverstein SJ. BAG3, a host cochaperone, facilitates varicellazoster virus replication. J Virol. 2007; 81: 7491-7503. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/17475647
  362. Knipe DM, Raja P, Lee JS. Clues to mechanisms of herpesviral latent infection and potential cures. Proc Natl Acad Sci USA. 2015; 112: 11993-11994. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/26392531
  363. Li Q, Buranathai C, Grose C, Hutt-Fletcher LM. Chaperone functions common to nonhomologous Epstein-Barr virus gL and varicella-zoster virus gL proteins. J Virol. 1997; 71: 1667-1670. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/8995697
  364. Attar N. Viral infection: de-chaperoning antivirals. Nat Rev Microbiol. 2016; 14: 2. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/26656092
  365. Eizuru Y. Development of new antivirals for herpesviruses. Antivir Chem Chemother. 2003; 14: 299-308. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/14968936
  366. Varadaraj A, Mattoscio D, Chiocca S. SUMO Ubc9 enzyme as a viral target. IUBMB Life. 2014; 66: 27-33. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/24395713
  367. Lowrey AJ, Cramblet W, Bentz GL. Viral manipulation of the cellular sumoylation machinery. Cell Commun Signal. 2017; 15: 27. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/28705221
  368. Mattoscio D, Segré CV, Chiocca S. Viral manipulation of cellular protein conjugation pathways: The SUMO lesson. World J Virol. 2013; 2: 79-90. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/24175232
  369. Wimmer P, Schreiner S. Viral mimicry to usurp ubiquitin and SUMO host pathways. Viruses. 2015; 7: 4854-4872. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/26343706
  370. Wilkinson KA, Henley JM. Mechanisms, regulation and consequences of protein SUMOylation. Biochem J. 2010; 428: 133-145. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/20462400
  371. Sriramachandran AM, Dohmen RJ. SUMO-targeted ubiquitin ligases. Biochim Biophys Acta. 2014; 1843: 75-85. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/24018209
  372. Sohn SY, Hearing P. Adenovirus early proteins and host sumoylation. MBio. 2016; 7: e01154-16. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/27651358
  373. Kumar A, Zhang KY. Advances in the development of SUMO specific protease (SENP) inhibitors. Comput Struct Biotechnol J. 2015; 13: 204-211. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/25893082
  374. Stallings CL, Silverstein SJ. Posttranslational modification and cell typespecific degradation of varicella-zoster virus ORF29p. J Virol. 2006; 80: 10836-10846. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/16956951
  375. Rajsbaum R, García-Sastre A, Versteeg GA. TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol. 2014; 426: 1265-1284. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/24333484
  376. Adorisio S, Fierabracci A, Muscari I, Liberati AM, Ayroldi E, et al. SUMO proteins: Guardians of immune system. J Autoimmun. 2017; 84: 21-28. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/28919255
  377. Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology. 2011; 411: 325-343. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/21277611
  378. Li X, Huang Y, Zhang Y, He N. Evaluation of microRNA expression in patients with herpes zoster. Viruses. 2016; 8. E326. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/27918431
  379. Markus A, Golani L, Ojha NK, Borodiansky-Shteinberg T, Kinchington PR, et al. Varicella-zoster virus expresses multiple small noncoding RNAs. J Virol. 2017; 91. e01710-e01717. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/29021397
  380. Kincaid RP, Sullivan CS. Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog. 2012; 8: e1003018. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/23308061
  381. Qi Y, Zhu Z, Shi Z, Ge Y, Zhao K, et al. Dysregulated microRNA expression in serum of non-vaccinated children with varicella. Viruses. 2014; 6: 1823-1836. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/24759212
  382. Jones M, Dry IR, Frampton D, Singh M, Kanda RK, et al. RNA-seq analysis of host and viral gene expression highlights interaction between varicella zoster virus and keratinocyte differentiation. PLoS Pathog. 2014; 10: e1003896. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/24497829
  383. Henderson HH, Timberlake KB, Austin ZA, Badani H, Sanford B, et al. Occupancy of RNA polymerase II phosphorylated on serine 5 (RNAP S5P) and RNAP S2P on varicella-zoster virus genes 9, 51, and 66 is independent of transcript abundance and polymerase location within the gene. J Virol. 2015; 90: 1231-1243. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/26559844
  384. Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M, et al. Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front Cell Neurosci. 2016; 10: 109. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/27199663
  385. Bello-Morales R, López-Guerrero JA. Extracellular vesicles in herpes viral spread and immune evasion. Front Microbiol. 2018; 9: 2572. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/30410480
  386. Pleet ML, Branscome H, DeMarino C, Pinto DO, Zadeh MA, et al. Autophagy, EVs, and infections: A perfect question for a perfect time. Front Cell Infect Microbiol. 2018; 8: 362. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/30406039
  387. Liu L, Zhou Q, Xie Y, Zuo L, Zhu F, et al. Extracellular vesicles: novel vehicles in herpesvirus infection. Virol Sin. 2017; 32: 349-356. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/29116589
  388. Crenshaw BJ, Gu L, Sims B, Matthews QL. Exosome biogenesis and biological function in response to viral infections. Open Virol J. 2018; 12: 134-148. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/30416610
  389. Anderson MR, Kashanchi F, Jacobson S. Exosomes in viral disease. Neurotherapeutics. 2016; 13: 535-546. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/27324390
  390. Sampey GC, Meyering SS, Zadeh MA, Saifuddin M, Hakami RM, et al. Exosomes and their role in CNS viral infections. J Neurovirol. 2014; 20: 199-208. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/24578033
  391. Alenquer M, Amorim MJ. Exosome biogenesis, regulation, and function in viral infection. Viruses. 2015; 7: 5066-5083. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/26393640
  392. Ferreira VL, Borba H, Bonetti AF, Leonart LP, Pontarolo R. Cytokines and interferons: types and functions. In: Autoantibodies and cytokines.
  393. Zajkowska A, Garkowski A, Świerzbińska R, Kułakowska A, Król ME, et al. Evaluation of chosen cytokine levels among patients with herpes zoster as ability to provide immune response. PLoS One. 2016; 11: e0150301. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/26934574
  394. Cornaby C, Tanner A, Stutz EW, Poole BD, Berges BK. Piracy on the molecular level: human herpesviruses manipulate cellular chemotaxis. J Gen Virol. 2016; 97: 543-560. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/26669819
  395. Pontejo SM, Murphy PM, Pease JE. Chemokine subversion by human herpesviruses. J Innate Immun. 2018; 10: 465-478. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/30165356
  396. Torres-Pedraza S, Betancur JG, Urcuqui-Inchima S. Viral recognition by the innate immune system: the role of pattern recognition receptors. Colomb Méd. 2010; 41: 377-387.
  397. Jenkins DE, Redman RL, Lam EM, Liu C, Lin I, et al. Interleukin (IL)-10, IL12, and interferon-gamma production in primary and memory immune responses to varicella-zoster virus. J Infect Dis. 1998; 178: 940-948. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/9806019
  398. Zak-Prelich M, McKenzie RC, Sysa-Jedrzejowska A, Norval M. Local immune responses and systemic cytokine responses in zoster: relationship to the development of postherpetic neuralgia. Clin Exp Immunol. 2003; 131: 318-323. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/12562395
  399. Jarosinski KW, Carpenter JE, Buckingham EM, Jackson W, Knudtson K, et al. Cellular stress response to varicella-zoster virus infection of human skin includes highly elevated interleukin-6 xpression. Open Forum Infect Dis. 2018; 5: ofy118. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/30014002
  400. Jones D, Neff CP, Palmer BE, Stenmark K, Nagel MA. Varicella zoster virusinfected cerebrovascular cells produce a proinflammatory environment. Neurol Neuroimmunol Neuroinflamm. 2017; 4: e382. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/29159203
  401. Choi EJ, Lee CH, Shin OS. Suppressor of cytokine signaling 3 expression induced by varicella-zoster virus infection results in the modulation of virus replication. Scand J Immunol. 2015; 82: 337-344. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/26072679
  402. Arvin AM, Koropchak CM, Williams BR, Grumet FC, Foung SK. Early immune response in healthy and immunocompromised subjects with primary varicella-zoster virus infection. J Infect Dis. 1986; 154: 422-429. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/3016110
  403. Smith-Norowitz TA, Josekutty J, Lev-Tov H, Kohlhoff S, Norowitz KB, et al. IgE anti-varicella zoster virus and other immune responses before, during, and after shingles. Ann Clin Lab Sci. 2009; 39: 43-50. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/19201740
  404. Nour AM, Reichelt M, Ku CC, Ho MY, Heineman TC, et al. Varicella-zoster virus infection triggers formation of an interleukin-1β (IL-1β)-processing inflammasome complex. J Biol Chem. 2011; 286: 17921-1733. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/21385879
  405. Fujimura T, Yamanashi R, Masuzawa M, Fujita Y, Katsuoka K, et al. Conversion of the CD4+ T cell profile from T(H2)-dominant type to T(H1)dominant type after varicella-zoster virus infection in atopic dermatitis. J Allergy Clin Immunol. 1997; 100: 274-282. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/9275152
  406. Bayat A, Burbelo PD, Browne SK, Quinlivan M, Martinez B, et al. Anti-cytokine autoantibodies in postherpetic neuralgia. J Transl Med. 2015; 13: 333. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/26482341
  407. Zhu SM, Liu YM, An ED, Chen QL. Influence of systemic immune and cytokine responses during the acute phase of zoster on the development of postherpetic neuralgia. J Zhejiang Univ Sci B. 2009; 10: 625-630. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/19650202
  408. Hao M, Wang X, Du J, Liu L, Jiao Y, et al. Cytokine levels are associated with the severity of varicella infections. J Infect Dev Ctries. 2015; 9: 190-196. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/25699494
  409. Bubak AN, Como CN, Blackmon AM, Jones D, Nagel MA. Varicella zoster virus differentially alters morphology and suppresses proinflammatory cytokines in primary human spinal cord and hippocampal astrocytes. J Neuroinflammation. 2018; 15: 318. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/30442152
  410. Lind L, Eriksson K, Grahn A. Chemokines and matrix metalloproteinases in cerebrospinal fluid of patients with central nervous system complications caused by varicella-zoster virus. J Neuroinflammation. 2019; 16: 42. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/30777092
  411. de Visser L, H de Boer J, T Rijkers G, Wiertz K, van den Ham HJ, et al. Cytokines and chemokines involved in acute retinal necrosis. Invest Ophthalmol Vis Sci. 2017; 58: 2139-2151. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/28395298
  412. Graybill C, Claypool DJ, Brinton JT, Levin MJ, Lee KS. Cytokines produced in response to varicella-zoster virus infection of ARPE-19 cells stimulate lymphocyte chemotaxis. J Infect Dis. 2017; 216: 1038-1047. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/28968855
  413. Traina-Dorge V, Sanford R, James S, Doyle-Meyers LA, de Haro E, et al. Robust pro-inflammatory and lesser anti-inflammatory immune responses during primary simian varicella virus infection and reactivation in rhesus macaques. J Neurovirol. 2014; 20: 526-530. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/25139181
  414. Otani N, Baba K, Okuno T. Interferon-gamma release assay: a simple method for detection of varicella-zoster virus-specific cell-mediated immunity. J Immunol Methods. 2009; 351: 71-74. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/19818791
  415. Verweij MC, Wellish M, Whitmer T, Malouli D, Lapel M, et al. Varicella viruses inhibit interferon-stimulated JAK-STAT signaling through multiple mechanisms. PLoS Pathog. 2015; 11: e1004901. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/25973608
  416. Rahaus M, Desloges N, Wolff MH. Varicella-zoster virus influences the activities of components and targets of the ERK signalling pathway. J Gen Virol. 2006; 87: 749-758. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/16528022
  417. Kurapati S, Sadaoka T, Rajbhandari L, Jagdish B, Shukla P, et al. Role of the JNK pathway in varicella-zoster virus lytic infection and eactivation. J Virol. 2017; 91: e00640-17. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/28637759
  418. Rahaus M, Desloges N, Wolff MH. Varicella-zoster virus requires a functional PI3K/Akt/GSK-3alpha/beta signaling cascade for efficient replication. Cell Signal. 2007; 19: 312-320. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/16934436
  419. François S, Sen N, Mitton B, Xiao X, Sakamoto KM, et al. Varicella-zoster virus activates CREB, and inhibition of the pCREB-p300/CBP interaction inhibits viral replication in vitro and skin pathogenesis in vivo. J Virol. 2016; 90: 86868697. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/27440893
  420. Neirinckx V, Coste C, Rogister B, Wislet-Gendebien S. Neural fate of mesenchymal stem cells and neural crest stem cells: which ways to get neurons for cell therapy purpose? 2013.
  421. Chi PI, Liu HJ. Molecular signaling and cellular pathways for virus entry. ISRN Virol. 2013; 8: 306595.
  422. Rahaus M, Desloges N, Wolff MH. ORF61 protein of varicella-zoster virus influences JNK/SAPK and p38/MAPK phosphorylation. J Med Virol. 2005; 76: 424-433. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/15902710
  423. Fleming SB. Viral inhibition of the IFN-induced JAK/STAT signalling pathway: development of live attenuated vaccines by mutation of viral-encoded IFN-antagonists. Vaccines (Basel). 2016; 4. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/27367734
  424. Kuchipudi SV. The complex role of STAT3 in viral infections. J Immunol Res. 2015; 2015: 272359. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/26199948
  425. Roca Suarez AA, Van Renne N, Baumert TF, Lupberger J. Viral manipulation of STAT3: evade, exploit, and injure. PLoS Pathog. 2018; 14: e1006839. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/29543893
  426. Sen N, Che X, Rajamani J, Zerboni L, Sung P, et al. Signal transducer and activator of transcription 3 (STAT3) and survivin induction by varicella-zoster virus promote replication and skin pathogenesis. Proc Natl Acad Sci USA. 2012; 109: 600-605. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/22190485
  427. Ku CC, Chang YH, Chien Y, Lee TL. Type I interferon inhibits varicellazoster virus replication by interfering with the dynamic interaction between mediator and IE62 within replication compartments. Cell Biosci. 2016; 6: 21. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/26985360
  428. Ouwendijk WJD, van Veen S, Mahalingam R, Verjans GMGM. Simian varicella virus inhibits the interferon gamma signalling pathway. J Gen Virol. 2017; 98: 2582-2588. PubMed.: https://www.ncbi.nlm.nih.gov/pubmed/28901902
  429. Shakya AK, O'Callaghan DJ, Kim SK. Interferon gamma inhibits varicellazoster virus replication in a cell line-dependent manner. J Virol. 2019; 93. 00257-00319.
  430. Zwezdaryk KJ, Combs JA, Morris CA, Sullivan DE. Regulation of Wnt/βcatenin signaling by herpesviruses. World J Virol. 2016; 5: 144-154.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Figure 1

Figure 5

Figure 1

Figure 6

Figure 1

Figure 7

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?