Abstract

Research Article

Mechanism of Action and Validation of the Traditional Medicinal use of Grewia Tenax Fruits in Sudan to Encounter Iron Deficiency Anemia

Randa A Almahdi*, Hiba Abdel Rahman Ali and Sami Ahmed Khalid

Published: 27 December, 2023 | Volume 7 - Issue 1 | Pages: 029-038

Introduction: In Sudan, Grewia tenax fruits, are known commonly as Goddaim. The fruit’s pericarp is used traditionally for a long time as a juice or a porridge to treat iron deficiency anemia (IDA). Traditional Goddaim users have a very strong belief in its effectiveness. However, the pattern of hemoglobin improvement follows an initial fast increase followed by a decline upon continuing its use. Some previous studies have attributed its effect to high iron content, while the iron quantity was too small. This work attempts to find an explanation for its mechanism of action by screening the fruit extract and its respective fractions for secondary metabolites, minerals, vitamins, and fibre. 
Methods: Entailed three methodologies: Chemical analysis to identify quantified minerals, ascorbic acid and non-digestible fibers, Phytochemical Analysis to separate and identify secondary metabolites using high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS-MS technique), and estimation of radical scavenging activities of crude fruit extract and its respective chloroform and ethyl acetate fractions by inhibition of the 2,2-diphenylpicrylhydrazyl (DPPH).
Results: Ascorbic acid and indigestible fibres were revealed in the aqueous extract. Secondary metabolites were flavonoids (e.g., quercetin, kaempferol), organic acids (e.g., ferulic acid, chlorogenic acid), β-carboline alkaloids (e.g., 3-hydroxy-tetrahydroharman) identified in the chloroform, and ethyl acetate fractions. The in vitro antioxidant activity of G. tenax fruit extract was confirmed spectrophotometrically. 
Conclusion: It can be concluded that the initial enhancement of iron absorption through ascorbic acid and fibres, followed by iron uptake inhibition, could be explained by iron chelation by the chelators in the fruits. This paradoxical effect may qualify G. tenax fruits as a safety gauge for improving haemoglobin levels without compromising iron excess once iron stores are filled by keeping the oxidative stress in check. This may present G. tenax fruits as a good and safe remedy that optimizes the treatment of IDA.

Read Full Article HTML DOI: 10.29328/journal.jhcr.1001026 Cite this Article Read Full Article PDF

Keywords:

Grewia tenax; Traditional uses; Iron deficiency anaemia; Mechanism of action; LC/MS/MS flavonoids; Iron bioavailability; Oxidative stress; Chelation; Antioxidants

References

  1. Sharma N, Patni V. Grewia tenax () Fiori. A traditional medicinal plant with enormous economic perspective. Asian J Pharm Clin Res. 2012; 5: 3; 28-32.
  2. Punjani BL. Ethnobotanical aspects of some plants of aravalli hills in north gujarat. Anc Sci Life. 2002 Apr;21(4):268-80. PMID: 22557066; PMCID: PMC3331046.
  3. Al-Said MS, Mothana RA, Al-Sohaibani MO, Rafatullah S. Ameliorative effect of Grewia tenax (Forssk) fiori fruit extract on CCl(4)-induced oxidative stress and hepatotoxicity in rats. J Food Sci. 2011 Nov-Dec;76(9):T200-6. doi: 10.1111/j.1750-3841.2011.02381.x. Epub 2011 Oct 4. PMID: 22416728.
  4. Malik F, Hussain S, Mirza T. Screening for antimicrobial activity of thirty-three medicinal plants used in Pakistan's traditional medicine system. Med. Plant Res. 2011; 5:14; 3052- 3060.
  5. Ghayur MN. Science across borders: 5th annual natural health product research conference-march 26-29, 2008, toronto, Canada. Evid Based Complement Alternat Med. 2010 Sep;7(3):391-5. doi: 10.1093/ecam/nen059. Epub 2008 Sep 4. PMID: 18955362; PMCID: PMC2887334.
  6. Ullah W, Uddin G, Rauf AB. Chemical Constituents and biological screening of optiva Dummond ex Burreet Whole plant. AEJAES. 2011; 11: 4; 542- 546.
  7. Ebrahim AM, Eltayeb MH, Khalid H, Mohamed H, Abdalla W, Grill P, Michalke B. Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. J Nat Med. 2012 Oct;66(4):671-9. doi: 10.1007/s11418-012-0630-6. Epub 2012 Feb 12. PMID: 22327800.
  8. Umbreit J. Iron deficiency: a concise review. Am J Hematol. 2005 Mar;78(3):225-31. doi: 10.1002/ajh.20249. PMID: 15726599.
  9. Ebrahim AM, Eltayeb MH, Khalid H, Mohamed H, Abdalla W, Grill P, Michalke B. Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. J Nat Med. 2012 Oct;66(4):671-9. doi: 10.1007/s11418-012-0630-6. Epub 2012 Feb 12. PMID: 22327800.
  10. Harper JL, Conard ME. Iron deficiency anemia. Medscape WebMD, Drugs and Diseases. Hematol updated 2023.
  11. Reveiz L, Gyte GM, Cuervo LG, Casasbuenas A. Treatments for iron-deficiency anaemia in pregnancy. Cochrane Database Syst Rev. 2011 Oct 5;(10):CD003094. doi: 10.1002/14651858.CD003094.pub3. PMID: 21975735.
  12. Benito P, Miller D. Iron absorption and bioavailability: An updated review. Nutr Res. 1998; 18: 3; 581- 603.
  13. Jomova K, Valko M. Importance of iron chelation in free radical-induced oxidative stress and human disease. Curr Pharm Des. 2011;17(31):3460-73. doi: 10.2174/138161211798072463. PMID: 21902663.
  14. Sheikh NA, Desai T, Kosalge BS. Natural Fe chelators as potential therapeutic agents for iron overload diseases, trace elements and their effects on human health and conditions. IntechOpen. Semantic Scholar. 2021. Doi:10.5.772/IntechOpen.98749.
  15. Theil EC, Chen H, Miranda C, Janser H, Elsenhans B, Núñez MT, Pizarro F, Schümann K. Absorption of iron from ferritin is independent of heme iron and ferrous salts in women and rat intestinal segments. J Nutr. 2012 Mar;142(3):478-83. doi: 10.3945/jn.111.145854. Epub 2012 Jan 18. PMID: 22259191; PMCID: PMC3278266.
  16. Ems T, Kayla SL, Huechler MR. Biochemistry of iron absorption Book, In StatPeals Internet. Treasure Island (FL): Stat Publishing; 2023.
  17. Sharp P, Srai SK. Molecular mechanisms involved in intestinal iron absorption. World J Gastroenterol. 2007 Sep 21;13(35):4716-24. doi: 10.3748/wjg.v13.i35.4716. PMID: 17729393; PMCID: PMC4611193.
  18. Conrad ME, Umbreit JN, Moore EG. Iron absorption and transport. Am J Med Sci. 1999 Oct;318(4):213-29. doi: 10.1097/00000441-199910000-00002. PMID: 10522550.
  19. Udipi S, Ghugra P, Gokhale C. Iron, Oxidative stress, In Gokhale C. ed by Lushchak V and Semchyshyn H M, Book Molecular Mechanisms and Biological Effects. 2014; 73-109.
  20. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003 Aug 1;102(3):783-8. doi: 10.1182/blood-2003-03-0672. Epub 2003 Mar 27. PMID: 12663437.
  21. Frazer DM, Wilkins SJ, Becker EM, Murphy TL, Vulpe CD, McKie AT, Anderson GJ. A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut. 2003 Mar;52(3):340-6. doi: 10.1136/gut.52.3.340. PMID: 12584213; PMCID: PMC1773562.
  22. Yamaji S, Sharp P, Ramesh B, Srai SK. Inhibition of iron transport across human intestinal epithelial cells by hepcidin. Blood. 2004 Oct 1;104(7):2178-80. doi: 10.1182/blood-2004-03-0829. Epub 2004 Jun 3. PMID: 15178582.
  23. Ganz T. Cellular iron: ferroportin is the only way out. Cell Metab. 2005 Mar;1(3):155-7. doi: 10.1016/j.cmet.2005.02.005. PMID: 16054057.
  24. Nemeth E, Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr. 2006;26:323-42. doi: 10.1146/annurev.nutr.26.061505.111303. PMID: 16848710.
  25. Muñoz M, Villar I, García-Erce JA. An update on iron physiology. World J Gastroenterol. 2009 Oct 7;15(37):4617-26. doi: 10.3748/wjg.15.4617. PMID: 19787824; PMCID: PMC2754509.
  26. Kim J, Wessling-Resnick M. The Role of Iron Metabolism in Lung Inflammation and Injury. J Allergy Ther. 2012;3(Suppl 4):004. doi: 10.4172/2155-6121.S4-004. Epub 2012 Jan 25. PMID: 29226014; PMCID: PMC5718378.
  27. Sharma VR, Brannon MA, Carloss EA. Effect of omeprazole on oral iron replacement in patients with iron deficiency anemia: A case report. Med. J. 2002; 97: 9; 887- 889.
  28. Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega. 2022 Jun 10;7(24):20441-20456. doi: 10.1021/acsomega.2c01833. PMID: 35755397; PMCID: PMC9219084.
  29. Almahdi RS, Khalid SA. An insight into the practice of iron therapy: contribution to the ongoing debate with special reference to low and middle-income countries. SJMS. 2021; 16; 1: 17-32.
  30. Lesjak M, Balesaria S, Skinner V, Debnam ES, Srai SKS. Quercetin inhibits intestinal non-haem iron absorption by regulating iron metabolism genes in the tissues. Eur J Nutr. 2019 Mar;58(2):743-753. doi: 10.1007/s00394-018-1680-7. Epub 2018 Mar 28. PMID: 29594477; PMCID: PMC6437293.
  31. Mu M, An P, Wu Q, Shen X, Shao D, Wang H, Zhang Y, Zhang S, Yao H, Min J, Wang F. The dietary flavonoid myricetin regulates iron homeostasis by suppressing hepcidin expression. J Nutr Biochem. 2016 Apr;30:53-61. doi: 10.1016/j.jnutbio.2015.10.015. Epub 2015 Nov 10. PMID: 27012621.
  32. Tang Y, Li Y, Yu H, Gao C, Liu L, Chen S, Xing M, Liu L, Yao P. Quercetin prevents ethanol-induced iron overload by regulating hepcidin through the BMP6/SMAD4 signaling pathway. J Nutr Biochem. 2014 Jun;25(6):675-82. doi: 10.1016/j.jnutbio.2014.02.009. Epub 2014 Mar 19. PMID: 24746831.
  33. Zhen AW, Nguyen NH, Gibert Y, Motola S, Buckett P, Wessling-Resnick M, Fraenkel E, Fraenkel PG. The small molecule, genistein, increases hepcidin expression in human hepatocytes. Hepatology. 2013 Oct;58(4):1315-25. doi: 10.1002/hep.26490. Epub 2013 Aug 19. PMID: 23703590; PMCID: PMC3770762.
  34. Wang X, Li Y, Han L, Li J, Liu C, Sun C. Role of Flavonoids in the Treatment of Iron Overload. Front Cell Dev Biol. 2021 Jul 5;9:685364. doi: 10.3389/fcell.2021.685364. PMID: 34291050; PMCID: PMC8287860.
  35. Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes(1). Free Radic Biol Med. 2002 Oct 15;33(8):1037-46. doi: 10.1016/s0891-5849(02)01006-7. PMID: 12374615.
  36. Puntarulo S. Iron, oxidative stress and human health. Mol Aspects Med. 2005 Aug-Oct;26(4-5):299-312. doi: 10.1016/j.mam.2005.07.001. PMID: 16102805.
  37. Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res. 2003 Oct 29;531(1-2):81-92. doi: 10.1016/j.mrfmmm.2003.08.004. PMID: 14637247.
  38. Imam MU, Zhang S, Ma J, Wang H, Wang F. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients. 2017 Jun 28;9(7):671. doi: 10.3390/nu9070671. PMID: 28657578; PMCID: PMC5537786.
  39. Madhikarmi NL, Murthy KR. Antioxidant enzymes and oxidative stress in the erythrocytes of iron deficiency anemic patients supplemented with vitamins. Iran Biomed J. 2014;18(2):82-7. PMID: 24518548; PMCID: PMC3933916.
  40. Aslan M, Horoz M, Çelik H. Evaluation of oxidative status in iron deficiency anemia through total antioxidant capacity measured using an automated method. Turk J Haematol. 2011 Mar 5;28(1):42-6. English. doi: 10.5152/tjh.2011.04. PMID: 27263940.
  41. Lalhminghlui K, Jagetia GC. Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichiiKorth in vitro. Future Sci OA. 2018 Jan 4;4(2):FSO272. doi: 10.4155/fsoa-2017-0086. PMID: 29379645; PMCID: PMC5778377.
  42. Iuchi Y. Anemia Caused by Oxidative Stress Internet. Anemia. InTech. 2012. http://dx.doi.org/10.5772/31404.
  43. Mishra K, Himanshu O, Chaudhary NK. Estimation of properties Of antioxidants using DPPH. Food Chem. 2012; 130: 4; 1036- 1043.
  44. Entezari S, Haghi SM, Norouzkhani N, Sahebnazar B, Vosoughian F, Akbarzadeh D, Islampanah M, Naghsh N, Abbasalizadeh M, Deravi N. Iron Chelators in Treatment of Iron Overload. J Toxicol. 2022 May 5;2022:4911205. doi: 10.1155/2022/4911205. PMID: 35571382; PMCID: PMC9098311.
  45. Tanaka N, Kashiwada Y. Phytochemical studies on traditional herbal medicines based on the ethnopharmacological information obtained by field studies. J Nat Med. 2021 Sep;75(4):762-783. doi: 10.1007/s11418-021-01545-7. Epub 2021 Jul 13. PMID: 34255289; PMCID: PMC8397699.
  46. Allen SE. Chemical analysis of ecological materials. 2nd Edition. Blackwell Scientific Publications. Oxford and London. 1989.
  47. Lvov BV. Fifty years of atomic absorption spectrometry, Anal. Chem. 2005; 60: 4; 382- 392.
  48. Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. 2004 Jan;39(1):1-15. doi: 10.1002/jms.585. Erratum in: J Mass Spectrom. 2004 Apr;39(4):461. PMID: 14760608.
  49. Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 2007 Aug;42(4):321-4. doi: 10.1016/j.ymeth.2007.01.006. PMID: 17560319; PMCID: PMC1895922.
  50. Biapa NPC, Oben JE, Ngogang JY. Scavenging radical kinetic and anti-anemic screening properties of some medicinal plants used in Cameroon, J. Appl. Res. Nat. Prod. 2011; 4: 1; 29-35.
  51. Partima A and Gadikar N, Liquid chromatography-mass spectrometry and its applications: a brief review, org. Inorg. Chem. ISSN: 2637-4609. 2018; 1:1.
  52. Nagajyothi S, Swetha Y, Neeharika J. Hyphenated techniques- a comprehensive review. 2017; 2: 4; 1-9.
  53. Freedman R, Famine foods, 1998: center for new crops and plant products, Tilaceae.available Purdue University. http://www.hort.purdue.edu/newcrop/newCrops.html.
  54. Osman M A, Nutrient composition and antinutritional factors of fiori (Grewia tenax) Fruit. Saud Society for Agric. Asci. 2003; 3:1; 38-49.
  55. Yagi S M and AlHassan G O M, Nutritional composition of Grewia tenax species (tenax (Forsk.) Fiori, G.flavescens Juss and G. viollsa) wild fruits”. IJFST, 2010; 2:3: 159- 162.
  56. Abdel-Rahman N A, Awad I A and Abdelrahman E E, A study of some Sudanese edible forest fruits and their nectars. Ph.D. thesi. JAAS Journal E-ISSN: 2311-6730. 2014; 2:2; 39-44.
  57. Ebrahim AM, Eltayeb MH, Khalid H, Mohamed H, Abdalla W, Grill P, Michalke B. Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. J Nat Med. 2012 Oct; 66(4):671-9. doi: 10.1007/s11418-012-0630-6. Epub 2012 Feb 12. PMID: 22327800.
  58. Abuagarib E A A, Yang R, Hua X and Siddeeg, Chemical composition, nutritional properties and volatile compounds of Goddeim (tenax. Forssk) Fiori Fruits. J.Food Nutr. Res. 2014; 2:4; 187-192.
  59. Swain JH, Tabatabai LB, Reddy MB. Histidine content of low-molecular-weight beef proteins influences nonheme iron bioavailability in Caco-2 cells. J Nutr. 2002 Feb; 132(2):245-51. doi: 10.1093/jn/132.2.245. PMID: 11823585.
  60. Ahmad R, Ahmed W, Iqbal S. Prebiotics and iron bioavailability? Unveiling the hidden association - a review, Trends Food Sci Technol. 2021;110; 584- 590.
  61. Husmann FMD, Zimmermann MB, Herter-Aeberli I. The Effect of Prebiotics on Human Iron Absorption: A Review. Adv Nutr. 2022 Dec 22;13(6):2296-2304. doi: 10.1093/advances/nmac079. PMID: 35816457; PMCID: PMC9776726.
  62. Pan Y, Qin R, Hon M. The interactions of polyphenols with Fe and their applications in Fenton/ Fenton-like reactions. Purif. Technol. 2022; 300:1; 121831.
  63. Chobot V, Huber C, Trettenhahn G, Hadacek F. (+/-)-catechin: chemical weapon, antioxidant, or stress regulator? J Chem Ecol. 2009 Aug;35(8):980-96. doi: 10.1007/s10886-009-9681-x. Epub 2009 Aug 24. PMID: 19701725; PMCID: PMC2746304.
  64. Isemura M. Catechin in Human Health and Disease. Molecules. 2019 Feb 1;24(3):528. doi: 10.3390/molecules24030528. PMID: 30717121; PMCID: PMC6384718.
  65. Abdallah FB, Fetoui H, Fakhfakh F, Keskes L. Caffeic acid and quercetin protect erythrocytes against the oxidative stress and the genotoxic effects of lambda-cyhalothrin in vitro. Hum Exp Toxicol. 2012 Jan;31(1):92-100. doi: 10.1177/0960327111424303. Epub 2011 Oct 25. PMID: 22027499.
  66. Benariba N, Djaziri R, Bellakhdar W, Belkacem N, Kadiata M, Malaisse WJ, Sener A. Phytochemical screening and free radical scavenging activity of Citrullus colocynthis seeds extracts. Asian Pac J Trop Biomed. 2013 Jan;3(1):35-40. doi: 10.1016/S2221-1691(13)60020-9. PMID: 23570014; PMCID: PMC3609396.
  67. Tseng TH, Wang CJ, Kao ES, Chu HY. Hibiscus protocatechuic acid protects against oxidative damage induced by tert-butylhydroperoxide in rat primary hepatocytes. Chem Biol Interact. 1996 Aug 14;101(2):137-48. doi: 10.1016/0009-2797(96)03721-0. PMID: 8760395.
  68. Réus GZ, Stringari RB, de Souza B, Petronilho F, Dal-Pizzol F, Hallak JE, Zuardi AW, Crippa JA, Quevedo J. Harmine and imipramine promote antioxidant activities in prefrontal cortex and hippocampus. Oxid Med Cell Longev. 2010 Sep-Oct;3(5):325-31. doi: 10.4161/oxim.3.5.13109. Epub 2010 Sep 1. PMID: 21150338; PMCID: PMC3154037.
  69. Francik R, Kazek G, Cegła M, Stepniewski M. Antioxidant activity of beta-carboline derivatives. Acta Pol Pharm. 2011 Mar-Apr;68(2):185-9. PMID: 21485291.
  70. Scarano A, Laddomada B, Blando F, De Santis S, Verna G, Chieppa M, Santino A. The Chelating Ability of Plant Polyphenols Can Affect Iron Homeostasis and Gut Microbiota. Antioxidants (Basel). 2023 Mar 3;12(3):630. doi: 10.3390/antiox12030630. PMID: 36978878; PMCID: PMC10045931.
  71. Hart JJ, Tako E, Glahn RP. Characterization of Polyphenol Effects on Inhibition and Promotion of Iron Uptake by Caco-2 Cells. J Agric Food Chem. 2017 Apr 26;65(16):3285-3294. doi: 10.1021/acs.jafc.6b05755. Epub 2017 Apr 12. PMID: 28361541.
  72. Yang D, Wang T, Long M, Li P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxid Med Cell Longev. 2020 Dec 30;2020:8825387. doi: 10.1155/2020/8825387. PMID: 33488935; PMCID: PMC7790550.
  73. Ren J, Lu Y, Qian Y, Chen B, Wu T, Ji G. Recent progress regarding kaempferol for the treatment of various diseases. Exp Ther Med. 2019 Oct;18(4):2759-2776. doi: 10.3892/etm.2019.7886. Epub 2019 Aug 13. PMID: 31572524; PMCID: PMC6755486.
  74. AAlikhani M, Khalili M, Jahanshahi M. The natural iron chelators' ferulic acid and caffeic acid rescue mice's brains from side effects of iron overload. Front Neurol. 2022 Oct 14;13:951725. doi: 10.3389/fneur.2022.951725. PMID: 36313492; PMCID: PMC9614107.
  75. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol Physiol. 2018;31(6):332-336. doi: 10.1159/000491755. Epub 2018 Sep 20. PMID: 30235459.
  76. Aboulaghras S, Sahib N, Bakrim S, Benali T, Charfi S, Guaouguaou FE, Omari NE, Gallo M, Montesano D, Zengin G, Taghzouti K, Bouyahya A. Health Benefits and Pharmacological Aspects of Chrysoeriol. Pharmaceuticals (Basel). 2022 Aug 7;15(8):973. doi: 10.3390/ph15080973. PMID: 36015121; PMCID: PMC9415049.
  77. Li S P, Wang Y W, Oi S L. The analogs B carboline alkaloids, harmaline, and harmine possess a variety of biological properties including acetylcholinesterase inhibitory activity, antioxidant, anti-inflammatory, and many others, and have great potential for treating Alzheimer’s disease. Pharmacol. 2018; 346.
  78. Mota N S R S, Kviecinkski M R, Felipe KB. β‑carboline alkaloid harmine induces DNA damage and triggers apoptosis by a mitochondrial pathway: a study in silico, in vitro and in vivo. Int. j. funct. Nutr. May 2020;1:1.

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?