Abstract

Case Report

Congenital Dysfibrinogenaemia: A Family Case Report

G García-Donas*, MT Vargas, C Martínez-Chinchilla, N Alkadi and A Rodríguez

Published: 03 December, 2024 | Volume 8 - Issue 1 | Pages: 034-038

Congenital fibrinogen qualitative disorders, including dysfibrinogenemia and hypo-dysfibrinogenaemia, are highly heterogeneous, both in clinical manifestation and for the mutational molecular spectrum driving these disorders. Correlations between phenotype and genotype remain poorly defined. Considerable work lies ahead in order to achieve diagnostic and prognostic precision and subsequently provide targeted management for this rare disease. Here we report the laboratory test, the clinical and molecular characterisation of a family with dysfibrinogenemia.

Read Full Article HTML DOI: 10.29328/journal.jhcr.1001032 Cite this Article Read Full Article PDF

Keywords:

Congenital fibrinogen disorders; Dysfibrinogenaemia; Genotype-phenotype correlation; Next-generation sequencing

References

  1. Palla R, Peyvandi F, Shapiro AD. Rare bleeding disorders: diagnosis and treatment. Blood. 2015 26;125(13):2052-61. Available from: https://doi.org/10.1182/blood-2014-08-532820
  2. Mumford AD, Ackroyd S, Alikhan R, Bowles L, Chowdary P, Grainger J, et al. BCSH Committee. Guideline for the diagnosis and management of the rare coagulation disorders: a United Kingdom Haemophilia Centre Doctors' Organization guideline on behalf of the British Committee for Standards in Haematology. Br J Haematol. 2014 ;167(3):304-26. Available from: https://doi.org/10.1111/bjh.13058
  3. Casini A, Undas A, Palla R, Thachil J, de Moerloose P. Diagnosis and classification of congenital fibrinogen disorders: communication from the SSC of the ISTH. J Thromb Haemost. 2018;16(9):1887–90. Available from: https://doi.org/10.1111/jth.14216
  4. Cunningham MT, Brandt JT, Laposata M, Olson JD. Laboratory diagnosis of dysfibrinogenemia. Arch Pathol Lab Med. 2002;126(4):499-505. Available from: https://doi.org/10.5858/2002-126-0499-ldod
  5. Miesbach W, Schenk J, Alesci S, Lindhoff-Last E. Comparison of the fibrinogen Clauss assay and the fibrinogen PT-derived method in patients with dysfibrinogenemia. Thromb Res. 2010;126(6):e428–33. Available from: https://doi.org/10.1016/j.thromres.2010.09.004
  6. Galanakis DK. Afibrinogenemias and dysfibrinogenemias. In: Marder V, White GC, Aird WC, editors. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: Lippincott Williams & Wilkins. 2012;693-708.
  7. Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res. 2022;50(D1):D988–95. Available from: https://doi.org/10.1093/nar/gkab1049
  8. Shapiro SE, Phillips E, Manning RA, Morse CV, Murden SL, Laffan MA, Mumford AD. Clinical phenotype, laboratory features, and genotype of 35 patients with heritable dysfibrinogenaemia. Br J Haematol. 2013;160(2):220-7. Available from: https://doi.org/10.1111/bjh.12085
  9. Ebert RF. Index of Variant Human Fibrinogens. Boca Raton, Ann Arbor, Boston: CRC Press; 1994. Available from: https://www.routledge.com/Index-of-Variant-Human-Fibrinogens/Ebert/p/book/9780849389986?srsltid=AfmBOopqoE9HdkcaIiZ7BrhTrATa5hagIOZ2AJ3ShfalPEizfz5JcfOY
  10. Smith N, Bornikova L, Noetzli L, Guglielmone H, Minoldo S, Backos DS, et al. Identification and characterization of novel mutations implicated in congenital fibrinogen disorders. Res Pract Thromb Haemost. 2018;2(4):800-811. Available from: https://doi.org/10.1002/rth2.12127
  11. Casini A, Neerman-Arbez M, Ariëns RA, de Moerloose P. Dysfibrinogenemia: from molecular anomalies to clinical manifestations and management. J Thromb Haemost. 2015;13(6):909-19. Available from: https://doi.org/10.1111/jth.12916
  12. Neerman-Arbez M, de Moerloose P, Bridel C, Honsberger A, Schönbörner A, Rossier C, et al. Mutations in the fibrinogen α gene account for the majority of cases of congenital afibrinogenemia. Blood. 2000;96(1):149-52. PMID: 10891444. Available from: https://pubmed.ncbi.nlm.nih.gov/10891444/
  13. Hanss M, Biot F. A database for human fibrinogen variants. Ann NY Acad Sci. 2001;936:89–90. Available from: https://doi.org/10.1111/j.1749-6632.2001.tb03495.x
  14. Casini A, Blondon M, Lebreton A, Koegel J, Tintillier V, de Maistre E, et al. Natural history of patients with congenital dysfibrinogenemia. Blood. 2015;125(3):553–61. Available from: https://doi.org/10.1182/blood-2014-06-582866
  15. Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee on Fibrinogen. Thromb Haemost. 1995;73(1):151-61. PMID: 7740487. Available from: https://pubmed.ncbi.nlm.nih.gov/7740487/
  16. Asselta R, Platè M, Robusto M, Borhany M, Guella I, Soldà G, et al. Clinical and molecular characterisation of 21 patients affected by quantitative fibrinogen deficiency. Thromb Haemost. 2015;113(3):567-76. Available from: https://doi.org/10.1160/th14-07-0629
  17. Bor MV, Feddersen S, Pedersen IS, Sidelmann JJ, Kristensen SR. Dysfibrinogenemia-Potential Impact of Genotype on Thrombosis or Bleeding. Semin Thromb Hemost. 2022;48(2):161-173. Available from: https://doi.org/10.1055/s-0041-1730358
  18. Ramanan R, McFadyen JD, Perkins AC, Tran HA. Congenital fibrinogen disorders: Strengthening genotype-phenotype correlations through novel genetic diagnostic tools. Br J Haematol. 2023;203(3):355-368. Available from: https://doi.org/10.1111/bjh.19039
  19. Peyvandi F, Kaufman RJ, Seligsohn U, Salomon O, Bolton-Maggs PH, et al. Rare bleeding disorders. Haemophilia. 2006;12 Suppl 3:137-42. Available from: https://doi.org/10.1111/j.1365-2516.2006.01271.x
  20. Duric N, Szakmany T. The role of rotational thromboelastometry in understanding the coagulation problems in COVID-19 associated critical illness. Anaesthesiol Intensive Ther. 2021;53(4):336-342. Available from: https://doi.org/10.5114/ait.2021.109401
  21. Reardon B, Pasalic L, Favaloro EJ. The Role of Viscoelastic Testing in Assessing Hemostasis: A Challenge to Standard Laboratory Assays? J Clin Med. 2024;13(12):3612. Available from: https://doi.org/10.3390/jcm13123612
  22. Williams M, Green K. Role of mass spectrometry in the diagnosis of congenital fibrinogen defects. Blood Coagulation & Fibrinolysis. 2021;32(4):333-338.
  23. Tian D, Liang J, Gao H, Xu X, Nie W, Yin M, et al. Clinical phenotype and laboratory characteristics of 93 patients with congenital fibrinogen disorders from unrelated 36 families. Res Pract Thromb Haemost. 2024;8:e102445. Available from: https://doi.org/10.1016/j.rpth.2024.102445
  24. Castaman G, Kessler CM. Genotype-phenotype correlation in congenital dysfibrinogenemia: New insights. Blood Adv. 2022;6(16):4978-4984.
  25. Paraboschi EM, Duga S, Asselta R. Fibrinogen as a pleiotropic protein causing human diseases: The mutational burden of Aα, Bβ, and γ chains. Int J Mol Sci. 2017;18(12):2711. Available from: https://doi.org/10.3390/ijms18122711
  26. Zhou J, Ding Q, Chen Y, Ouyang Q, Jiang L, Dai J, et al. Clinical features and molecular basis of 102 Chinese patients with congenital fibrinogen disorders. Blood Cells Mol Dis. 2015;55(4):308–15. Available from: https://doi.org/10.1016/j.bcmd.2015.06.002
  27. Marchi R, Vilar R, Durual S, Goodyer M, Gay V, Neerman-Arbez M, et al. Fibrin clot properties to assess the bleeding phenotype in unrelated patients with hypodysfibrinogenemia due to novel fibrinogen mutations. Thromb Res. 2021;197:56–64. Available from: https://doi.org/10.1016/j.thromres.2020.11.003
  28. Ceznerova E, Kaufmanova J, Sovova Ž, Štikarova J, Loužil J, Kotlin R, et al. Structural and functional characterization of four novel fibrinogen mutations in FGB causing congenital fibrinogen disorder. Int J Mol Sci. 2022;23(2):721. Available from: https://doi.org/10.3390/ijms23020721
  29. Moret A, Zuniga A, Ibanez M, Cid AR, Haya S, Ferrando F, et al. Clinical and molecular characterization by next generation sequencing of Spanish patients affected by congenital deficiencies of fibrinogen. Thromb Res. 2019;180:115–7. Available from: https://doi.org/10.1016/j.thromres.2019.06.015
  30. Liu X, Wang X, Zhang J. Advances in the genetic diagnosis of congenital dysfibrinogenemia: the role of next-generation sequencing. J Thromb Haemost. 2023;21(7):1355-1363.
  31. Gindele R, Kerenyi A, Kallai J, Pfliegler G, Schlammadinger A, Szegedi I, et al. Resolving differential diagnostic problems in von Willebrand disease, in fibrinogen disorders, in Prekallikrein deficiency and in hereditary hemorrhagic telangiectasia by next-generation sequencing. Life. 2021;11(3):202. Available from: https://doi.org/10.3390/life11030202
  32. Neerman-Arbez M, de Moerloose P. Williams Hematology. New York: McGraw-Hill; 2010.
  33. Weisel JW, Litvinov RI. Mechanisms of fibrin polymerization and clinical implications. Blood. 2013;121(10):1712-9. Available from: https://doi.org/10.1182/blood-2012-09-306639
  34. Richard M, Celeny D, Neerman-Arbez M. Mutations accounting for congenital fibrinogen disorders: an update. Semin Thromb Hemost. 2022;48(8):889–903. Available from: https://doi.org/10.1055/s-0041-1742170
  35. Meh DA, Mosesson MW, Siebenlist KR, Simpson-Haidaris PJ, Brennan SO, DiOrio JP, et al. Fibrinogen Naples I (B beta A68T) nonsubstrate thrombin-binding capacities. Thromb Res. 2001;103(1):63–73. Available from: https://epublications.marquette.edu/biomedsci_fac/47/
  36. Huffman JE, de Vries PS, Morrison AC, Sabater-Lleal M, Kacprowski T, Auer PL, et al. Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF. Blood. 2015;126(11):e19–e29. Available from: https://doi.org/10.1182/blood-2015-02-624551
  37. de Vries PS, Chasman DI, Sabater-Lleal M, Chen MH, Huffman JE, Steri M, et al. A meta-analysis of 120,246 individuals identifies 18 new loci for fibrinogen concentration. Hum Mol Genet. 2016;25(2):358–70. Available from: https://doi.org/10.1093/hmg/ddv454
  38. Pankratz N, Wei P, Brody JA, Chen MH, de Vries PS, Huffman JE, et al. Whole-exome sequencing of 14,389 individuals from the ESP and CHARGE consortia identifies novel rare variation associated with hemostatic factors. Hum Mol Genet. 2022;31(18):3120–32. Available from: https://doi.org/10.1093/hmg/ddac100
  39. Bornikova L, Peyvandi F, Allen G, Bernstein J, Manco-Johnson MJ. Fibrinogen replacement therapy for congenital fibrinogen deficiency. J Thromb Haemost. 2011;9(9):1687-704. Available from: https://doi.org/10.1111/j.1538-7836.2011.04424.x
  40. Casini A, de Moerloose P. How I treat dysfibrinogenemia. Blood. 2021;138(21):2021–2030. Available from: https://doi.org/10.1182/blood.2020010116
  41. Li Y, Ding B, Wang X, Ding Q. Congenital (hypo-)dysfibrinogenemia and bleeding: A systematic literature review. Thromb Res. 2022;217:36-47. Available from: https://doi.org/10.1016/j.thromres.2022.07.005
  42. Casini A, de Moerloose P. Can the phenotype of inherited fibrinogen disorders be predicted? Haemophilia. 2016;22(5):667-75. Available from: https://doi.org/10.1111/hae.12967
  43. Casini A. From Routine to Research Laboratory: Strategies for the Diagnosis of Congenital Fibrinogen Disorders. Hamostaseologie. 2020;40(4):460-466. Available from: https://doi.org/10.1055/a-1182-3510

Figures:

Figure 1

Figure 1

Similar Articles

Recently Viewed

  • Synthesis of Carbon Nano Fiber from Organic Waste and Activation of its Surface Area
    Himanshu Narayan*, Brijesh Gaud, Amrita Singh and Sandesh Jaybhaye Himanshu Narayan*,Brijesh Gaud,Amrita Singh,Sandesh Jaybhaye. Synthesis of Carbon Nano Fiber from Organic Waste and Activation of its Surface Area. Int J Phys Res Appl. 2019: doi: 10.29328/journal.ijpra.1001017; 2: 056-059
  • Obesity Surgery in Spain
    Aniceto Baltasar* Aniceto Baltasar*. Obesity Surgery in Spain. New Insights Obes Gene Beyond. 2020: doi: 10.29328/journal.niogb.1001013; 4: 013-021
  • Tamsulosin and Dementia in old age: Is there any relationship?
    Irami Araújo-Filho*, Rebecca Renata Lapenda do Monte, Karina de Andrade Vidal Costa and Amália Cinthia Meneses Rêgo Irami Araújo-Filho*,Rebecca Renata Lapenda do Monte,Karina de Andrade Vidal Costa,Amália Cinthia Meneses Rêgo. Tamsulosin and Dementia in old age: Is there any relationship?. J Neurosci Neurol Disord. 2019: doi: 10.29328/journal.jnnd.1001025; 3: 145-147
  • Case Report: Intussusception in an Infant with Respiratory Syncytial Virus (RSV) Infection and Post-Operative Wound Dehiscence
    Lamin Makalo*, Orlianys Ruiz Perez, Benjamin Martin, Cherno S Jallow, Momodou Lamin Jobarteh, Alagie Baldeh, Abdul Malik Fye, Fatoumatta Jitteh and Isatou Bah Lamin Makalo*,Orlianys Ruiz Perez,Benjamin Martin,Cherno S Jallow,Momodou Lamin Jobarteh,Alagie Baldeh,Abdul Malik Fye,Fatoumatta Jitteh,Isatou Bah. Case Report: Intussusception in an Infant with Respiratory Syncytial Virus (RSV) Infection and Post-Operative Wound Dehiscence. J Community Med Health Solut. 2025: doi: 10.29328/journal.jcmhs.1001051; 6: 001-004
  • The prevalence and risk factors of chronic kidney disease among type 2 diabetes mellitus follow-up patients at Debre Berhan Referral Hospital, Central Ethiopia
    Getaneh Baye Mulu, Worku Misganew Kebede, Fetene Nigussie Tarekegn, Abayneh Shewangzaw Engida, Migbaru Endawoke Tiruye, Mulat Mossie Menalu, Yalew Mossie, Wubshet Teshome and Bantalem Tilaye Atinafu* Getaneh Baye Mulu,Worku Misganew Kebede,Fetene Nigussie Tarekegn,Abayneh Shewangzaw Engida,Migbaru Endawoke Tiruye,Mulat Mossie Menalu,Yalew Mossie,Wubshet Teshome,Bantalem Tilaye Atinafu*. The prevalence and risk factors of chronic kidney disease among type 2 diabetes mellitus follow-up patients at Debre Berhan Referral Hospital, Central Ethiopia. J Clini Nephrol. 2023: doi: 10.29328/journal.jcn.1001104; 7: 025-031

Read More

Most Viewed

Read More

Help ?