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Abstract 
Congenital ϐibrinogen qualitative disorders, including dysϐibrinogenemia and hypo-

dysϐibrinogenaemia, are highly heterogeneous, both in clinical manifestation and for the mutational 
molecular spectrum driving these disorders. Correlations between phenotype and genotype remain 
poorly deϐined. Considerable work lies ahead in order to achieve diagnostic and prognostic precision 
and subsequently provide targeted management for this rare disease. Here we report the laboratory 
test, the clinical and molecular characterisation of a family with dysϐibrinogenemia.
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or thrombotic events. However, phenotypic variability and 
lack of correlation between laboratory values, symptoms 
manifestation, and disease severity complicate diagnosis and 
consequently, clinical management [10].

CD is generally associated with autosomal dominant 
inheritance caused by heterozygosity for missense 
mutations. The two most frequently mutated hotspots occur 
at FGA Arg35 and FGG Arg301 [11]. Most cases carrying 
these hotspot mutations are asymptomatic as detailed on 
the GEHT HFD database, not signiϐicantly associated with 
either the risk of thrombotic events or with the risk of major 
bleeding or with pregnancy complications [12-14]. Advances 
in molecular proϐiling techniques over the last decade have 
signiϐicantly increased the numbers of published variants 
in the FGA, FGB, and FGG genes driving these disorders. Few 
genotypes are clearly correlated with a clinical phenotype 
[15]. The only description of a rare variant is not sufϐicient for 
a correct genetic diagnosis, and the pathogenic role of a point 
variant should be demonstrated by experimental validation 
[16]. The correlation between the clinical phenotype and 
genotype of these patients is usually unclear [17,18]. We 
describe a family case with dysϐibrinogenaemia in order to 
clarify the genotype–phenotype relationship.

Aims 

Determine clinical phenotype, laboratory features, and 
genotype in a family with CD identiϐied at our centre.

Introduction
Congenital Fibrinogen Disorders (CFDs) are rare 

inherited disorders affecting ϐibrinogen quantity and 
function [1,2]. Quantitative ϐibrinogen deϐiciencies include 
aϐibrinogenaemia (absent plasma ϐibrinogen antigen 
levels) and hypoϐibrinogenaemia (proportional decrease 
of functional and antigenic ϐibrinogen levels). Qualitative 
disorders include dysϐibrinogenaemia (decreased 
functional and normal antigenic ϐibrinogen levels) and 
hypodysϐibrinogenaemia (discrepant decrease of functional 
and antigenic ϐibrinogen level, suggested activity: antigen 
ratio <0.7) [3,4]. The diagnosis of CFDs is based on a 
coagulation test with ϐibrinogen antigen often performed 
by immunological methods, and activity assays (Clauss 
ϐibrinogen), in addition to Thrombin Time (TT) and Reptilase 
Time (RT) [5]. Genetic mutations in the coding region of one 
of the three ϐibrinogen genes, FGA, FGB, or FGG lead to these 
ϐibrinogen disorders [6]. Abnormalities in the FGA and FGG 
genes occur more commonly than in FGB. There are more 
than 1000 mutations published according to cases listed in 
the Groupe d’Etude sur l’Hemostase et la Thrombose (GEHT) 
Human Fibrinogen Database (HFD) [7].

Congenital Disϐibrinogenaemia (CD) is the most frequent 
type of CFD, but its exact prevalence is difϐicult to establish 
because of the large number of unreported asymptomatic 
cases. Approximately 50% - 70% of CD patients are 
diagnosed incidentally, either during routine laboratory 
testing or before surgery [8,9]. Clinical presentation in CD 
is highly variable, from no manifestations to bleeding and/
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Case presentation
A 56 years old female patient with a history of hypertension 

and hypercholesterolemia suffered an episode of decreased 
visual acuity in the right eye in 2021 because of Central 
Retinal Vein Occlusion (CRVO) so she was diagnosed with CD 
because of a thrombophilia test. The laboratory test showed 
reduced Clauss Fibrinogen (CF) with normal Quantitative 
Fibrinogen (QF). Rotational-thromboelastometry (ROTEM) 
was assessed to complete functional study and diagnosis 
was conϐirmed by genotype. The patient had no history 
of thrombosis or bleeding despite multiple major surgical 
interventions. We studied the family, so relatives with CD 
were clinically evaluated. Samples were analysed using 
Sysmex coagulometer CS-2500 reagents (PT- Tromborel, 
APTT- Actin FS, TT- Thromboclotin, RT-Batroxobin, CF-
Thrombin). QF with Nephelometry reagent Siemens N 
Antiserum to Human ϐibrinogen. The genetic study was an 
exome analysis using the Next Generation Sequencing (NGS) 
NEXTseq 1000 sequencing system (Illumina). 

Results
The results of the coagulation assays are summarised in 

Table 1. ROTEM showed basically prolonged Coagulation 
Time (CT) in EXTEM and minimal shortening in maximum clot 
ϐirmness (MCF) in FIBTEM (Figure 1). Seven of ten relatives 

were diagnosed with CD and all of them were asymptomatic. 
Highlights two sisters with cardiovascular risk factors and 
no haemostatic complications in multiple major surgeries. 
The genotype in all CD subjects was variant FGG c.902G>A 
p. (Arg301His), previously reported [19], in an autosomal 
dominant pattern. The mutations considered pathogenic 
were compared against previously described mutations 
as reported by ClinVar and the HGMD genomic variant 
classiϐication database. The family also had antecedents of a 
consanguineous marriage.

Discussion
The clinical presentation of ϐibrinogen disorders 

does not show a consistent correlation with ϐibrinogen 
levels, functional assays, or genotype. The CD is the most 
frequent type of CFD characterized by dysfunctional 
ϐibrinogen (decreased CF) despite normal antigen levels. 
Various methods of assessing the functional impact are 
used as viscoelastic assays (thromboelastography or TEG 
and ROTEM), other less widespread techniques are silico 
molecular modelling, ϐibrinolysis assays (e.g. ϐibrinopeptide 
release and turbidimetry), and structural studies (e.g. electron 
microscopy) [18,20,21]. A better understanding of the genetic 
mechanisms behind this condition is useful for reϐining 
diagnostic techniques and treatment strategies according 
to genotype-phenotype correlation. Some mutations lead 

Table 1
Age (years) at diagnosis PTr (0,8-1,2) APTTr (0,8-1,2) TT s (15-20) RT s (16-22) CF mg/dl (180-350) QF mg/dl (180-350)

Propositus 56 1,1 0,97 34,2 37,8 71,8 321
Daughter 1 25 1,1 1,16 37,2 38,1 72 324
Daughter 2 27 1,1 1,15 35,4 38,3 90 323
Brother 1 64 1,0 1,07 18,3 21,5 270 NA
Sister 1* 57 1,08 0,87 37,5 33,1 59,2 295

Sister´s 1 son 20 1,18 1,0 35 36 58 268
Sister´s 1 daughter 35 1,13 0,95 36 35,9 63,9 227

Sister´s 1 son 40 1,04 0,96 19 23,7 294 NA
Sister 2 54 1,07 0,95 18,8 21,5 183 NA

Sister 3** 67 1,16 0,98 37,1 36,6 67,6 246
Sister´s 3 daughter 42 1,02 0,91 33,5 35,2 87 372

PT: Prothrombin Time; APTT: Activated Partial Thromboplastin Time; TT: Thrombin Time; TR: Reptilase Time; CF: Clauss Fibrinogen; QF: Quantitative Fibrinogen; NA: Not Aplicable; 
Shaded in Yellow Affected Relatives; *Diabetes Mellitus (DM); **DM, Dyslipidemia, Smoker, Polio disease

  EXTEM 
MCF: 61 mm (50-72) CT:95 s (38-79) 

FIBTEM
MCF: 8 mm (9-25)

Figure 1: Rotational-Thromboelastometry.
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based recommendations and consensus on the therapeutic 
management of (hypo-dysϐibrinogenemia) [40]. Therapeutic 
strategies are mainly based on personal and family bleeding 
history, thrombosis, and/or pregnancy complications [41]. 
Genotype–phenotype correlations would be of help to better 
estimate the risk of these patients. Some dysϐibrinogenemia 
variants are strongly associated with increased susceptibility 
to thrombosis but other speciϐic variants and the bleeding 
tendency are not so well established [42]. Global hemostatic 
assay such as ROTEM would be a help for diagnosis and 
therapy guidance, especially in case of major surgery, in the 
propositus case this basal test was minimally altered. Further 
studies are needed to deϐine whether these tests could be 
used to monitor the ϐibrinogen replacement or whether they 
could be of diagnosis or prognostic value [43].

Conclusion
Dysϐibrinogenaemia presents a diagnostic challenge 

because most patients are asymptomatic and the routine 
coagulation tests are usually normal. Including CF at the basic 
coagulation test, could help to get an earlier diagnosis. Robust 
genotype-phenotype correlations are difϐicult to establish 
for ϐibrinogen disorders. According to the literature, the 
variant FGG c.902G>A p. (Arg301His), is broadly incidental 
and asymptomatic. There is no clear link to the thrombotic 
events so far. Functional studies such as Rotational-
thromboelastometry could aid in approach diagnosis and 
treatment guidance, but the role is not so well established. 
NGS is useful to support the diagnosis of rare diseases. 
Further research is needed to deepen the knowledge of the 
genotype and function of molecular variants with clinical 
correlation for risk assessment and tailored treatment in 
these patients.
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